UNCLASSIFIED

AD NUMBER

AD465805

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; MAR 1965. O her
requests shall be referred to Arny Ballistic

Research Laboratories, Aberdeen Proving G ound,
MD 21005-5066.

AUTHORITY

USABRL per Itr, 5 Nov 1965

THISPAGE ISUNCLASSIFIED

BRL
1273
c. 3A

BRL R 1273

REPORT
NO. 1273

THE FORAST PROGRAMMING LANGUAGE FOR
BR

ORDVAC AND LESC (REVISED)

By Lloyd W. Campbell

Glenn A. Beck

g.n

MARCH 1965 ey

Bip,, AFg, MD:: 21005

COUNTED 1y

e amma

U. S. ARMY MATERIEL COMMAND
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

DDC_AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

The
an o
4

80 Qe

ndings in this report-are not to be construed as
icial Department of the Army position, unless
ignet her authorized documents.

BALLISTIC RESEARCH LABORATORTIES

REPORT NO. 1273

(Supersedes Report No. 1172)

MARCH 1965

FtorA
TSR] i
o

THE FORAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

Lloyd W. Campbell
Glenn A. Beck

RDT & E Project No. 1PO14501A14B

s
os)
&
o
lw)
=
B3
=

PROVIN GROUND, MARYL

BALLISTIC RESEARCH LABORATORTIES

LWCampbell/GABeck
Aberdeen Proving Ground, Md.

L T e T =

March 1565

THE FORAST PROGRAMMING LANGUAGE FOR ORDVAC AND BRLESC (REVISED)

ABSTRACT

FORAST 18 a procedure oriented programming language designed for
use on the ORDVAC and BRLESC computers at BRL. Although it was designed
for professional programmers, FORAST contains sufficient simple concepts
to make it usable by a novice or journeyman. It permits the use of
arithmetic formulas, some English word statements, and each computer
accepts its own symbolic or absolute machine language. The latter
feature permits the professional programmer to use the full power of

each computer.

TABLE OF CONTENTS

I. INTRODUCTION..ssessessnsscsssancssssnse Cerecececcencnsenns 9

IT. CHARACTER BET ececececcococscosccsocscoscsosscssossssosssanss 11
III. NAMES AND ADIRESSES ccececoccccccescccccsccsocascsssscssss 172
IV. ARITHMETIC EXPRESSIONS ¢ecccoecccscocccccscsasscccscsosseas 15
V. ARITHMETIC FORMULAS ceeececcssvcococsccvseccsscassssossssse 10

VI. E:NGLISmeD STA’IMTS © 00800060600 00000060000000006006000060s00s0 19

] riAmA
Lo UULUe s 000000000 0000000000000t 000000000606006060006000000s00s 20

\N
.
g
.
.
.
.
.
.
.
.
.
g
.
\Y]
w

5e COUNT:eeeeocecscccccsacsosccscsssassassssssacsssssasaas 23
7 e S R e S B O 0 0000 00000 0 00 00O LON 00 OO T8 000
Be MOVEeeeeooeecoooovoscacsactssascsssssscososssasacsscseae 20

9. ENTER.ooooonooloollooool‘llooo.o.llllooo-nonoon.o.-..o 30

lo. READ andPRINT OI'PUNCH-......-...-o-----.-------.-..- 32

11. mToo.oooooolooooooloooooooooooo.ooooooooooooooo.o-.- 3

s
g

Y AM (A

A\vmw'Ame \A'AT....ooonoonoooooooooo..oooooo.oonooo.oo 37

.
[

VIII. USEOFLOCATIONFIELD..-----..-ooo--o-oo.o-----.-.-.....-. 38

AR

mN

L paviov %D&u\ J-J-LFNQ......................6..666655555..55

A.

5

[
L]

(=]

I3

E!b'

PROBeeoeesoooceocsessoscsososansasasssccsscsacasasas
BLOC: e eseceasesossoccsccssscsecosssssscsaccscscccnss
BYNeueeoceroooososoascsssosssossassssscscscccsscsannse
LOC.coeeeeocovcccssssoeensssososassoscccscaaccnconnse
LAST e eeseeoassssossasvascsveasssosssasasasonsossssess
00
LIST (Dictionary and Code Printing)eccececscsccccesce
DECo sinie e« o8 sisieesvsisiessosssseessssonsesssssssssossss
) {0
FORM.eoteeoooesoooescsnssssscsssssssssssasscsonssoss
BEXA.eceoeoscsosssscsscssossssescssscsssscasscssacee
. 1 S P
DATE. e eeeeececoccscosoccoscsossssosssasonsssoscassonee
MM, o« oo consnsacsacassassosanesesssceasssssscasesss
7)1
BTORe e eeeocerocccosscscsssososcesossssccssssssnsnncs
O e Fe R e R TR T e T TR Y R FeTeTeTe TRt Reto e e e Te Rt RN e ToereTe e

r J.-Ls

m.oooO...o...0000...000.000..0..00000.0.....0000.

SIJBR.....00.........0...00...000..0000..000.0...00.0
m..ggo.....0000.0.0.00.‘..0..onnooooooo.ooo...o...

OOT...

v

TABLE OF CONTENTS (Cont'd)

»<

LIST OF SUBROUTINES «vvvtececoroeorororoecacanasassseasons T4

=
=)

ANSLATOR ERROR PRINTS.. seveeesesesesesccrscssacasosensse 95

XIT. RUN ERROR PRINTS. ¢. o0 v et ot v oeorononoeonosacassnsneoansoss 100

XIIT. USE OF SOME SPECIAL NAMES.. .. ¢t et veeevevsoecasaoaseneossss 105

ERROR: s 0¢ 06 00 00 60 66 60 a0 seseseseoscessssosaeonsesessass 105

G U258 5 e 5o a0 0o 0o 6o 04 00 66 00 0o (o 06 06 06 60 0o 0o 0650 00t ALeI
XIV. MACHINE ASSEMBLY LANGUAGE.: v ve v o 00 o0 o0 o0 ou s0 vo o0 va se oo« 108

A. ORDVAC: 4 t4 ee en oe oo ve o0 a0 o0 o0 o0 o0 oo a0 o0 00 00 00 00 o0 o0 00« 108

td
3
£
147)]
(@]

@0 06 6% 9% 65 e e es 00 66 60 04 06 o4 o0 o0 o

.
-
-
-

XV. OPERATION AND SPEED OR ORDVAC TRANSLATOR.. et v4 e0 oo ov oo o0 o0 o 118
XVI. OPERATION AND SPEED OF BRLESC TRANSLATOR.. ¢. ei e o4 oo oo oo oo o 119

XVII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON ORDVAC.........

o}
no
’—J

XVIII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON BRLESC..

=
\Y)
[AV)

SUMMARY OF INSTRUCTIONS FOR RUNNING FORAST PROBLEMS

ON BRIESC.« ve o oo oe on e an sn se se a0 os 00 o0 oe o0 o0 o 0e en s s 125

A
y
y

P

. MISCELLANEOUS COMMENTS.. v ¢t ov et ot 0n 0n o0 on 00 va a0 00 o0 00 00 o0 s

b=t
n
-~

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D
APPENDIX E
APPENDIX F

APPENDIX G

TABLE OF CONTENTS (Cont'd)

Page
SYMBOLIC ORDVAC ORDER TYPES..... e 135
SYMBOLIC BRLESC ORDER TYPES.ve.onere... 130
SYMBOLIC C ADDRESS FOR BRLESC
INPUT-OUTPUT ORDERS. .+t vveennenn.. ereeee..138
NUMBER OF ELEMENTS IN TRIANGULAR ARRAYS.-.....139
SUMMARY OF PSEUDO ORDER TYPES.eee.e0....140
EXAMPLES OF ASSEMBLY CODE AND STATEMENTS......141
SAMPLE PROBLEMS. . eu v vnenveveveneonenneonns idli2

I. INTRODUCTION

FORAST 1s a programming language that is being used on the ORDVAC
and BRLESC computers at BRL. It allows a programmer to write a computer
program in a language that 1s closer to the English language and con-
ventional mathematical notation than the numerical machine language.

This simplifies the task of writing a program, makes it easier for
another person to read, and allows the same program to be translated

and run on either ORDVAC or BRLESC. While FORAST is a "problem-oriented"
language, it 1s closer to a good machine language than most similar
languages. FORAST also allows each machine to translate its own assembly
language so that the professional programmer may use the full power of
the ¢ 3

puter in any program.

t
The following objectives influenced the design of FORAST:

1. Fast translation with "load and go" operation.
2. Allow full usage of machine's capabilities.

3. Generation of efficient object programs.

4. Translator must fit 4096 word memory.

5 Human readability.

6. Used primarily for mathematical problems.

7. Compatability between ORDVAC and BRLESC.

While many of the above objectives conflict with each other, an
4

de to achieve an optimum compromise of the conflicting

program will illustrate a simple FORAST program. It

will read a pair of floating polnt numbers called X and Y, compute a

number called Z that is the square root of the sum of the squares of

>
o
o]
o]
[
[
o
oY
<
-
|,_-I
|,_-I
o
2]
(o5
o
ct
t
o
)
t
o
(]
0]
0]
:
o'
®
H
w
>
]
o
o
o9
N
(=4
o
o
H
|
o)
®
ot
s
=
U]

point form. Each 1i coding (and hence each key-punched card) may

contain either one or more machine orders in assembly language or one

LOCATION 0.7T. STATEMENTS
1.1 READ (X)(x)
Z = SQRT (X#*2 + Y**2)
PRINT (X)(Y)(2)% GoTo (1.1)
END GoTO (1.1)

This example 1llustrates four types of statements allowed in FCORAST.

statement is an arithmetic formula, On the left of the equality sign
is the name of the quantity that 1s to be computed. The formula or

expression to the right of the equality sign expresses the

“hape oSl o (120 Lwy

arithmetic that the computer should do to compute this new arithmetic

quantity. Note that X2 is written X¥*2 since superscripts or

pts cennot be key punched as such. SQRT is the standard name

that is used to represent the square root function. The PRINT state-
ment allows numerical results to be punched on cards. The GOTO state-
ment allows control to be directed to another statement . rather than
to the next one. Statements are done in the sequence that they are
written except when a GOTO statement 1s used to specify otherwise. Note

that the first statement has been given a "location" name of 1.1 and

Y o Vo s 1 } 1 wiaaiv

‘0 (1.1) means to go

b.
¢
:
g

ete
ment to be done in the running program. It is well to remember that
11 FORAST programs are done in two steps, first the entire symbolic
program is translated into a numerical machine language program with

assigned storage locations, and secondly, the program 1s r and the

[
(@]

desired computations performed and results produced.

The END card signals the completion of the translate phase. No
separate symbol is needed to signal the end of the running program; the

program runs until all data cards have been utilized. (An extra blank

card at the end of the deck is required.) This is the normal wa

b3
~
@]

k

stopping such programs at BRL. However, if no data cards are used in
the final part of a program, a GOTO (N.PROB)% statement should be used.
(See page 106). There is a HALT statement that may also be used, however
it is better to use GOTO (N.PROB)% because this will cause the computer
to stop at a standard "problem completed” halt.

II. CHARACTER SET

FORAST allows the use of the 26 capital letters, the 10 decimal

R
[~

gits, the decimal point, and prime (apostrophe) without any special
significance attached to any one of these characters. These characters
may be combined to make-up the names and locations of variables and

instructions.

The following characters have special meanings and must not be

used in names:

Card Punches Symbol and Meaning
X + 1s addition
Yy - 1s subtraction
X -4-8 * 1is multiplication
0-1 / is division
4 - 8 (1is left parenthesis
y -4-8) 1s right parenthesis
3-8 = 1is equals
0-4-8 % is end of statement
o - -8 s 1s used to indicate indexed addresses

Card Punches Symbol and Meening

x-5-28 < 48 less than
0-5-8 > 1is greater than
% ig exponentiation
4% is end of card (rest of the card 1is ignored)
< =o0or =< 1s less than or equsal
> =or => 1s greater than or equsl

The blank character is allowed and is ignored except when it is
included in alphsbetic information that is in a PRINT, PUNCH or ALFN
statement. The symbol b may be used to indicate a blank column to the

key punch operator.

The letters I and O must be written so as to be distinguishable from
the numbers 1 and 0. It is suggested that the letter I be written with
definite crossbars at top and bottom and the number one be written as a
straight line. A script letter O that is alsc larger than zero is
recommended. Some care must also be taken when writing S's and 5's, Z's
and 2's, B's and 8's and all other characters. Programmers are urged to

check the key punching of their programs.
ITI. NAMES AND ADDRESSES

The programmer may use symbolic names to represent the names of
variables and the locations of instructions and constants. The FORAST
translators translate these names into numerical machine memory addresses.
Hence each symbolic name represents a memory ceil. FORAST also allows

the use of absolute numerical addresses.

Symbolic addresses may be chosen so that they consist of one or more
characters with the following restrictions:

1. Must not contain any of the "special" characters. (See II)

2. Must not contain more than six characters unless the characters
after the first six are not required for unique identification.
(BLOC names on BRLESC may have as many as eight characters

with some restrictions. See page L45)

i2

3. Must contain at least one character that is not a decimal digit,
for example, a decimal point or some alphabetic character.

4. The leading character must not be zero. A leading zero is used
to indicate absolute sexadecimal addresses.

5. SELF can be used only to refer to the "location counter". (See
page 40).

6. Certain names (SIN, COS, I0G, etc.) have been reserved as the
names of subroutines and should not be used as the names of

variables. (See pages 75-95 far the complete list of subroutine

Some examples of symbolic names are X; TU; A3; 4J1; 1.1; SINA. The
name "1.1" may be either a symbolic address or a floating point number.
If it is written in an arithmetic expression, it is a number, otherwise
it is just a symbolic name. However, if it is followed by a comma, then

it would always be a symbolic name.

Absoclute machine addresses may be written in either decimal or sexa-
decimal. Sexadecimal sddresses must have at least one leading zero and
decimal addresses must not have a leading zero. Sexadecimal addresses
are never used as numbers because non-zero numbers must not have a lead-
ing zerc unless the first non-zero character is a decimal peint. The
single character O (zero) will be a number if it appears where numbers
are allowed. Decimal addresses will be used as numbers in arithmetic
expressions unless they are followed by a comma. Commas are not allowed
in numbers! Negative decimal addresses may be written and will be stored
as 2's complement addresses. The characters K, S, N, J, F, L, are used
for the sexadecimal characters ten, eleven, . . . , fifteen. For BRLESC,
absolute index register addresses must lie in the range 1 to 63 in decimal

or O1 to O3L in sexadecimal.

Indexed addresses may be written almost anywhere in FORAST. A
comma is used to indicate that an address is indexed and also separates

. ; :
the primary address from the index address. An address may be indexed

13

by one and only one index register. The actual or effective address
used at run time is the sum of the primary address and the contents of
the index register. Indexing may be used with any type of an address,
not Just those that are defined as blocks or arrays. Indexing is in

not in place of, constant "subscripts", thus, if Bl to B6

[4;]
o

e BLOC page 44), it is permissible to write B3,J. Some
examples of indexed addresses are A,1: B4,J: ,E: L2,I4: C,1k: C,0F:
;,OF. NOTE: A,-1 is not permissible. To get the same effect, first

pu

ct

1 4nta ¥ and +h
-1 into X and then use A,K.

Decimal or sexadecimal increments may be written with any symbolic
address. Thus a constant may be added or subtracted from a primary
address at translate time. In arithmetic expressions and formulas
(including the left side of formulas), the increment must be written
after the index name and the index name and increment enclosed in
parentheses. A,(F1): B,(1-2): Xu,(+3) are examples of addresses with

increments as they must be written ir

=

arithmetic expressions and formulas.
Note that the increment still may be used even if there is no index

register, thus X4,(+3) is an address that is three more than the address

~7

s not indexed. A sign must be used to distinguish an

[oD)
e

of Xk an
increment from an index register address. In any place other than

arithmetic expressions, (arithmetic expressions are allowed only in

necessary and the increment may be written either after t
address or after the index address. Thus A - 3: L4R3 + 6,II: X,J - 14

S
are legal addresses any place oth

D

r than arithmetic e

ii ad

n]
(13
[
n
s
Q
jn]
]
o
=]
o]

1h

NOTE CAREFULILY: Symbols of the form A + 3 outside of an
arithmetic expression refer to the address that is three greater than

the address assigned to A. It is safe to use such an expression when
referring to numbers since all numbers occupy one machine word. However,
such an expression should not be used when referring to locations of
statements unless the programmer ir familiar with the amount of code

that is generated by the statements. Thus, if A is a location, beware

of "GOTO (A+3)%". The machine language of ORDVAC is very different

from that of BRLESC and thus the number of words produced by the compiler
from a particular statement may be quite different on the two machines.
Note also that Al + 1 1is not necessarily the same address as A2, They

+hr anm~ e T
1 =4 (=)

ovn 49 A1 A
are the if and A2 are locations in a consecutive block

J Sl
that started at A or Al and includes A2.

Iv. ARITHMETIC EXPRESSIONS

Arithmetic expressions are allowed only in arithmetic formulas and
IF statements. They are used to indicate the arithmetic operations that
the computer should perform at run time and the special characters
described in II are used to indicate the types and sequence of the
desired operations. Arithmetic expressions are written much like they
are in normal algebraic and mathematical usage. However, some special
ules are necessary because everything must be written on on
a consecutive string of characters so that it is key punchable. Thus
superscripts, subscripts, and the normal over and under method of writing

fractions are not allowed and require special rules.

The operations that are allowed are:

l. + and - 5 addition and subtraction

2. *and / ; multiplication and division

3, ** F exponentiation

L, Single-valued functions of one variable. (subroutines)

Parentheses may be used to group these operations into any desired
sequence and are used in the same manner as they are in mathematics.
In the absence of parentheses, the operations that are lower on the
above list are performed before those that are higher on the list. Thus
multiplication is done before addition, st
exponentiation before subtraction, etc. Hence A + B/C**2 is the same
as A + (B/(C**2)) and C**2 15 the way % 1s written. For successive
operations that are on the same level; speclal rules apply when paren-
theses are omitted. Successive add or subtract operations are grouped
from the left, thus V + W - T is the same as (V + W) - T. Successive
multiply or divide operations are grouped from the right, thus A * R/B * S
is the same as A * (R/(B * S)). Since multiplication and division are
grouped from the right, parentheses are only required around any numerator
or denominator that involves addition or subtraction and usually requires
less parentheses than a left to right grouping. It also leads naturally

to a more efficient one-address machine code.

ed by writing a name adjacent to
either a left or right parenthesis or by following a right parenthesis
with a left one. Thus A * B may also be written as (A)B or A(B) or
(A)(B). It is not incorrect to use a redundant * symbol where a multi-
plication is so implied. Note that AB is a single symbolic address and
does not denote multiplication of A times B.

1es having only one argument and one result may be used in
arithmetic expressions by writing the standard name of the subroutine
followed by its argument enclosed in parentheses. The argument may be
ic expression and may use subroutines. See page 75 for the

standard list of subroutines allowed in arithmetic expressions.
) ; ARCTAN(X + EXP(R-S)) are some examples of the use of sub-

Successive exponentiations should always be grouped by using
parentheses. Without parentheses, ORDVAC groups them from left to

- ey

right and BRLESC groups them from right to left as they should be.
The power of the exponentiation may be any integer or non-integer
number or arithmetic expression. ©Small integer negative numbers may
hout being enclosed in parentheses, i.e.

*%_2, *¥%_5_ However ™*+" is illegal. A quantity being raised to

id should be written wit

o
o]

non-integer power must always be positive because the logarithm of
t number is used. A power of .5 causes the square root function

to be used. Constant integer powers of fifteen or less are accomplished

by in-line multiply orders plus one division order for negative integers.

Three types of arithmetic expressions are allowed, they are float-
ing point, integer and fixed point fraction. However, not more than
one type of arithmetic may be used in the same arithmetic expression.

j =gy

The type of arithmetic used in an expression is usually the "MODE" type.
(See page 59). However, it may be changed for any one expression by
writing "FLT(" or "FIX(" or "INT(" in front of any arithmetic formula
or relational clause in an IF statement. Constant numbezs written in
arithmetic expressions are converted to the form required for the type
of arithmetic being used in the expression. Fixed point fractional
points. A subroutine and an ENTER statement may be used to change variables
from one type of number to another. The standard subroutines allowed in
formulas all assume floating point arguments and hence must be used only

in floating point expressions. However, ABS (absolute value) may be used
with fractions and integers that are not stored in index registers. Index

registers on BRLESC are not full words and will always seem to be positive

BRLESC usually gives incorrect results and a negative integer product
on ORDVAC will have an improper zero sign bit. The power of exponentiation

17

must be a positive constant integer of fifteen or less in integer or
fractional expressions. (BRLESC doesallow integers to be raised
to any variable power or any constant power that does not have a
fractional part of .5 exactly.)

Constant numbers written in arithmetic expre

following rules:

w
4]
e
]
u‘
Lo/

(1) Commas are not allowed. Y

(2) Exponents and scale factors are not allowed.
(3) Signs are not allowed except for a minus sign after **,

(N2 e aet 17 ho 1m2d as ad hdaen ad aracand ases ma e
\ Signs will be used as add or subtract operators and the
\

numbers will be stored as positive.)
(4) leading zeros are allowed only if the first non-zero character
is a decimal

oint or if the number 1is zero

—~
U
~

Fixed point fractions must always contain a decimal point and
be less than one (sixteen on BRLESC) in absolute value.

V. ARITHMETIC FORMULAS

The arithmetic formula is the type of statement that is used the most
in writing FORAST programs. This statement has an arithmetic expression
that is to be evaluated written to the right of an = character and the
result is stored in the address specified on the left of the =. The
result may be stored in as many as fifteen different places by specifying
more than one address and having more than one = symbol to the left of
the arithmetic expression. Thus X =Y = A means to take the quantity
named A and store it in the memory locations called X and Y. Note that

the arithmetic expression may be just a single variable or number! The

Y=0% FLT(Q = A = B¥* . %

X=X+3% X,I = Y,I + SIN(A+B,I)/C,J*E

X=X, (#3) + 3% R,(J+2) = T1 ** 2 + 5 ** CoS(X3-X2)
FIX(X2,J = -X1 % (Note: the index register J, like any

other variable, 1s set only at run time)

18

The formula X = X + 3 shows that this type of statement is not
an equation that is to be solved. This example means that the value
three and stored back into the same memory
location.

Parentheses may be used to group operations in the usual manner.
They may be omitted at either end of the arithmetic part of the formula
because all right parentheses that are not closed on the left will auto-
matically be closed at the = symbol and all left parentheses that are
not closed on the right will asutomatically be closed at the % at the
end of the formula. The number and amount of nesting of parentheses is
practically unlimited. The amount of nesting is limited only by the
fact that the translators can save only 30 operations that have been
encountered by the left to right scan but not coded because of some
right to left grouping, either by parentheses or by a succession of

ide operations. Nesting that cause operations to be

The operations of + and - may be used as unary operations only at
the beginning of a formula or after a left parenthesis. The - symbol
may also be used as a sign after **¥ {f it is followed by a constant

number

umber. Th is the cnly exception to the rule that two operation symbols

I3

(+ - */) must not be written adjacent to each other.

VI. ENGLISH WORD STATEMENTS

LT
ne

ct

FORAST allows the use of a few English words to imstruct

&
computer to do certain operations. There are eleven of these statements,
ch de

each of which begins with a special English word that determines the

type of tement. All of the statements may be inlterspersed among

arithmetic formulas. Arithmetic expressions are not allowed in any of these

19

statements except in the relational clauses of the IF statement. All

other statements use only addresses which may have an increment as

GOTO: SET: SETEA: INC: COUNT: IF: CLEAR: MOVE: ENTER: READ and PRINT

T Wile asdiaada

General Form: GOTO (Location to go to)%

The words GO TC {or GOTO) may be used to tell the computer ‘o
go to a location of a statement that does not follow the statement that
has Jjust been done. Statements are normally done in the same sequence
written in, however this GOTO statement (and a few other state-
ments) may be used to change that sequence. The location of the state-

ment to be done next 1s enclosed in parentheses. Some examples are

GOTO(BOX2)% GOTO(START)%
GOTO(4.2)% GoTo(,E)%

Note that the address may be indexed and the last exampie 1llustrates
how "remote connections" can be handled in FORAST. Since an index
ister can hold an entire address; not merely the customary increment

_____ P

to an address, the address to go to may be whatever address has been

last set into an index register (by a SET statement) in the running

program. This idea of using index registers for "address substitution"

addresses. Note that the addition of the contents of an index register
to the primary address is still performed and while the primary address
{s usually blank (zero) in an indexed GOTO statement, it does not have

to be blank., Thus 3,V means to add 3 to the contents of V to get the
address used and 3,V is the same as ,(V+3).

T A {

Since ORDVAC {(See [1]) has both left and right orders (2 orders
per word), the GOTO will go to the proper side of the word if the
address is not indexed. Since the side it goes to 1s determined only
by the primary address, caution must be used with indexed addresses.
The effective address of all indexed addresses should be the location
of a left order. This can be accomplished by using location names
gin with a2 letter other than R for all location

transferred to by an indexed GOTO. (See VIII page 38.

4]

General Form: GOTO, index add.(Loc. to go to when index = 1)Loc
%

to go to when index = 2)

This statement will cause a program to go to different places
depending on the contents of an index register. When the contents
of the index register is an integer i, the ith location name on the
list of location names in this statement will be used as the location

of the next statement that is to be done. For example;

GOTO,I(A)B),k%b
will do a GOTO(A) statement when I = 1, and a GOTO(B) statement when
I = 2 and a GOTO(,K) statement when I = 3.

A decimal increment on the index address

W

enclosed in parentheses. For example;
GOTO, (J1 - 1)(11)12)%

will cause a GOTO(Ll) when J1 = 2 and a GOTO(L2) when J1 = 3. When

. . " " . .)
an increment is used, the "extra left parenthesis is required before

the first location name on the list.

21

For ORDVAC, each location on the list may go to either & left order
or a right order; they don't all have to go to the same side.

If by error, the value of the integer i1s zero, the computer wiil

cycle on one jump order. If the integer is too large, it will go on

tc the program 2t some peint below this statement.

Form: SET (Index add. = add. to put in index register). .

This statement should be used to set index registers to a

constant value. It cannot be used to set floating point numbers. The

value of the address itself (notthe contents of) written on the right
of the = is put into the index register specified. If this address is

a decimal or sexadecimal base number, then that number is put into the
index register. If this address is a symbolic name, then the address
that has been assigned to that name is put into the index register.
Hence this statement allows index registers to be set to addresses that
have been assigned to symbolic names of variables or locations. Indexed
addresses are not allowed (See 3. below) but a decimal increment is
allowed when the address is symbolic. Some examples of SET statements

are.:

Note that any number of index registers may be set with one SET statement
with each one separated from the previous one by a right parenthesis or

a right and a left parenthesis. A GOTO statement may be included at the
end of a SET statement without a % in between.

22

3. SETEA
General form: SETEA (Index add. = Indexable address)

This statement is the same as the SET statement except that
the. address on the right of the = is indexable and GOTO is not allowed
as part of this statement. Some examples of SETEA statements are
SETEA(I=A,J)%
SETEA(K=B,M+2) P = 14,117)%
This statement sets the effective address into the index register specifiegd.
L, INC

General form: INC (Index add. = Index add. + amount of increase

or decrease) 5000

This statement should be used to increase index registers by a

. 4 "n_n
t is writien after the =

constant amount. The index register name tha
(the same name should appear on the left of the "=") is increased by the
address itself (not the contents of) that is written after the first +

amount of increase

"n_n
or - sign that appears to the right of the =", Th

1]

may be symbolic and may have an increment but cannot be indexed. A minus
sign may be used to indicate a decrease only if the amount is not symbolic.

Some examples of the INC statements are

(P2 8 L 9 4 |

INC(TI=I+1)% INC(J=J-2)%
INC(S=S+03K)V=V+10)A=A+N-1 %

INC(R=R+41)G0OTO(,E)%

=
—~~

ay be used to increase (or decrease) any number of registers.

C statement without a %

This statement

A GOTO statement may be written at the end of an IN

ct

in between.

5. COUNT
General Form: COUNT (max. count) IN (Index Reg.) GOTO (ILoc. for

repeating loop)

23

This statement can be used to count the number of times &
loop 1s done and to also increase one index register. This index
register (specified after IN) is increased by one (or another amount
if it is s n or equal to the maximum
count specified after COUNT. (A symbolic "mex. count’ address will
be used as an index register whether a comma precedes it or not). The

increase occurs before the comparison! If the index register (s ci-

Pl 12001 42 LAE LIUCA ICKI1IBLEL

ry -d A1

fied after IN) is set to zero at the beginning of the loop and increased
(by one only)in a COUNT statement at the end of the loop, then max.
count 1s the total number of times the loop is to be done.

The amount to increase the index register may be specified
in three different ways. It may be written after IN by writing the
same type of formula as allowed in the INC statement, i.e. (I = I + 2)
would cause I to be increased by two. It may also be written by in-
serting "BY (increase)" between the max. count and IN as shown in the
third example below or it may be included inside the max. count
parentheses by the form of (max. count/increase) as shown in the fourth
example below. If no increase is specified, it will be used as one.
If the increase is n and n > 1, then the max. count specified must be
m times n in order that the loop be done m times. Thus COUNT (24/2)...
actually means the loop will be done 12 times (assuming the index started

at zero).

The max. count and the increase may be either absolute decimal

or sexadecimal integers, either explicit integers or the contents, at

run time, of index registers. In order to preserve the symmetry of

these two integer representations, symbolic names of index registers

may be written without the usual preceding comma. Thus COUNT (J/1-1)IN(K).

maoangc
A AL

+o use the contents of index register J as the max. count and to

1928y

increase the index register K by one less than the contents of I. If

r
1 times. (If =— 1 l is not

K starts at zero the loop would be done

n
=

an exact integer, the result appears to the machine to be rounded up to
the nearest integer; thus, if J = 69 and I = 3 then J/I-l would cause
the loop to be done 35 times.) Note that arithmetic expressions are not
d anywhere in a COUNT statement but that a constant increment

or decrement may be used with any address. Note also that the address
after GOTO (this GOTO may be replaced by any other English word) is

ump to when the index register has not reached its
upper limit. This will usually be the location of the beginning of the
loop since the COUNT statement will usually be the last statement in

the loop. The index register being increased 1s available within the
loop for indexing and the final increased value is available when the
max. count has been reached and control passes to the next statement.

Some examples of COUNT statement are

COUNT(20 YIN(J2)GOTO(BOX 3)%
COUNT(5)IN(K=K+1)GOTO(LOC 6)%
COUNT(N+4)BY(2)IN(R)GOTO(17.1)%

2 N}

COUNT(33/3)IN(I6)GO BACKTO(3.2)%

There is no inherent nesting limit of COUNT statements, the
only limit of nesting 1s the number of index registers avallable (54 on
BRLESC and about 3000 on ORDVAC). There are no restrictions on trans-
ferring into or cut of the loops controlled by COUNT statements.

On BRLESC only, it is possible to omit the "IN (index reg.)"
part of the COUNT statement if the increase amount is a constant number.
Such a statement counts by itself and resets itself to zero when the

1limit is reached; however, the loop must not be left by some other state-

ment.

25

6. IF
General Form: IF (ce) AND or OR (ce) AND or OR (ce).....
GOTO(Loc.)% where ce is any conditional expression that has the form
(AE relation AE relation AE) where AE is any arithmetic ex-
pression and the relation is <,<,>,> or =. The general form of "AE)
IS +" is also permitted for any conditional expression.

This statement allows a conditional transfer of control to
another statement. It goes to the location specified after GOTO
whenever the statement is "true". If the statement is "false", control
goes to the next statement. The AND condition always has precedence
over OR and this cannot be changed by using parentheses (this means
that the conditional expressions on both sides of any AND are grouped
together). However, any desired grouping of AND and OR conditions
can be obtained by writing enough IF statements and doing them in the

proper sequence.

Each conditional expression may be preceded by any one or more
of the following names that apply only to the next one conditional

expression:

-NOT ; Negate the meaning of the following conditional
expression. (Negate the relations and change the
implied "and" condition of several relations to an
"or" condition.) However, AND-NOT should not be
used before a conditional expression that contains
more than one relation. (The present FORAST trans-
lators will only negate the relations when this is
used and will not change the implied "and" con-
dition to "or".

-FLT ; Use floating point arithmetic to check the truth of

the next conditionsl expression.

26

-FIX Use fixed fractional arithmetic to check the truth

-e

of the next conditional expression.

-INT ; Use integer arithmetic to check the truth of the
next conditional expression.

-ABS ; This cannot be used when the = relation is involved
in the next conditional expression. For inequality
relations, the absolute values of both arithmetic
expressions are used to check the truth of all
relations in the next conditional expression.

-IF ; Allowed so OR-IF or AND-IF may be written. It is
also true that OR IF and AND IF (with or without the

space) may be written instead of OR and AND.

MODE arithmetic (see page 69) is used to check the truth of
any conditional expression that 1is not preceded by -FLT -FIX or -INT.

When the relation is =, a tolerance may be specified and the
conditional expression may have the general form of "AE = AE) WITHIN(AE)"
vhere AE is any arithmetic expression. Only one = relation is allowed
before the WITHIN and the AE after WITHIN is the tolerance. The equality
relation 1s considered to be true when the absolute value of the difference
of the two quantities 1s less than or equal to the absolute value of the

tolerance.

The GOTO portion of the IF statement may precede the IF or may
appear after any conditisnal expression. If the GOTO is at the beginning,
the conditional expressions are tested from left to right in the running
code. If the GOTO is at the end of the IF statement, the conditional
expressions are tested from right to left.

The following names should not be used as the names of arith-
metic quantities in IF statements: GOTO: OR; AND: IS: WITHIN: ORIF:

ANDIF. {Actuslly these names may be used except immediately followin

a right parenthesis.)

Q . VTAam ~AS TR P R .
Some examples of IF stavements are:

IF(Y=16)OR(X+AL)IS+GOTO(6L. T)
TF(A+B< R**2)AND(X > Y > 0)GoTO(LOC 3)
IF(Q=T-SIN(V/A))WITHIN(.001)GOTO(k.1)%
TF-INT(I=3)AND-INT-NOT(J=1)GOTO(DONE)%
IF-NOT(A=B=C JOR-ABS-NOT(X > = c3(coTo(,T)%

GOTO(WRONG)IF(X3-X1 < X3-Xk < =1)%

T o 1 .
In the following two examples, the statements on the same line

are equivalent:

IF(X>Y>1 Y
IF-NOT(X > Y > 1)GoT0(A)% IF{X < =Y)OR(Y < =1)GOTO(A)
7. CLEAR

General Form: CLEAR (count) NOS.AT (initial address)%

This statement may be used to clear a group of uniformly spaced
memory cells to zeroc. (Fla pt., fixed fraction, and integer zeros
are all identical.) The count is the number of cells to clear (or some
multiple of it if the count increment is not one). The count is written
in an index register and used exactly like the "max. count" in the COUNT
statement. CLEAR(I/B) does not mean to operate on every third lccation,
as one might expect, it simply means the contents of the desired index
register I happens to be 3 times the number of the number of cells that
are to be cleared.

The initial address is indexable and is the address of the first
cell to be cleared. Consecutive cells are cleared unless a different
amount of address advance is specified by writing it after a / after the
initial address. Counting by more than one may be done by writing

a larger counting increment after a / after the "count". If the counting

ne
[@¢]

and address advancing should use the same increment, it may be written
in parentheses just before %. If any of the count or address advance

increments are symbolic, it uses the contents of that cell and assumes

8
+head +h
that the cell 1s an index register containing an integer number at run

wia

the count is zero. If three or fewer cells are to be cleared it is

more efficlient to write arithmetic formulas instead of a CLEAR state-

mant
dCIv

e,g. an arithmetic formula of Y = O means to clear cell Y.

)

Some examples of CLEAR statements are:

CLEAR(20)NOS.AT(A)%
CLEAR(I/2)NOS.AT(X2)%
CPWAQ(N+K\NOS.AT(R’J+1/4)%

AV &Y Y) jAN

CLEAR(K-%)NOS.AT(B1)(3)%

te that the I/2 count in the second example actually means
to clear 1/2 cells, i.e. the / symbol here actually can be interpreted
as indicating integer division with the nearest larger integer being
used for inexact quotients. In the third example, every fourth cell
is cleared to zero, until (N+3) cells have been cleared or h(N+3) cells
have been "passed over."

8. MOVE

General Form: MOVE (count) NOS.FRM (add.) TO (add.)%

This statement may be used to move the contents of a uniformly
spaced group of memory cells to a different group of uniformly spaced

memory cells. The count is exactly the same as was defined for the

~TTIATY

CLEAR statement. The initial addresses of each group of cells are

written as shown above and each may be followed by & / and an address

29

advance increment that may be either positive or negative or zero. If
it is symbolic, then it is assumed to be an index register and its
contents are used as the advance. Only one symbolic name is allowed

in each advance increment. Any count or advance increment not specified
will be 1. If the increment for counting and advancing both addresses
should be the same, it may be enclosed in parentheses and inserted just
before %. At least one number is alwsys moved, even if the count is
zero. If three or fewer numbers are to be moved, it is more efficient
to write arithmetic formulas to do the moving, e.g. an arithmetic
formula of A = B% means to move the quantity from B into A.

Normally the initial address of the two groups of cells are
used and positive advance increments are used. However, if the initial
address of the "to" group of cells is the same as any one of the"from"
group of cells, then the moving must be done "backwards" so that all
cells get moved before they are moved into. In such a situation, end
addresses of each group of cells must be specified in the MOVE state-
ment and negative advance increments must also be specified. (See the

last example below.)
Some examples of MOVE statements are:

MOVE(144)NOS. FROM(A1)TO(B1)%
MOVE(N+4/4)NOS. FROM(Q+2)T0(Q)%

MOVE(J)NOS. FROM(X,M/3)T0(Y,N)%
MOVE(R-2)NOS. FROM(C2/0)TO(V1/K+1)%
MOVE(600)NOS. FROM(B600/ -1)TO(B700/-1)

9. ENTER
General Form: ENTER (subroutine name) (add.)....(add.)%

30

Th

is
conform to the one argument and one result type that are allowed in

statement allows the use of subroutines that do not

arithmetic formulas. (See pages 75-95 for the entire list of standard
subroutines that are included in the present FORAST translators.)

The subroutines allowed in formulas (except ABS) may also be entered
with an ENTER statement. The list of addresses following the subroutine
name are the addresses of the arguments and results and the number and
meaning of these addresses varles with the subroutine being entered.

The subroutine name address is not indexable (ORDVAC restriction) but
most subroutines allow any of the other addresses to be indexed. An
address specified for an argument or a result is usually the memory
location that contains the argument or will contain the result. However

= . R) ke

4+ 1 AA .
some subrouti ome addresses (which are necessarily integers) aa

2]

1eS use
being an integer argument, Thls 1s done for dimensions of matrices,

number of equations, number of points, etc. where the argument is often
d hence can be written as an address
address is variable, then the integer argument must be stored in an
index register and the address written with a comma in front of the

so that the effective address 1s the desired integer

argument. Small letters are used in the list of subroutines (pages 75-95)

e
to denote the addresses that are integer arguments.

o T

Constant numbers may be written instead of the address of an
argument only if preceded by an *¥. The type of number may be determined

by inserting F,X or I Dbetween the * and the number. In the absence

of F,X, or I, the number will be converted to the MODE type of arith-

metic. (See DEC, page 56 for the rules for writing decimal constants.)

7

ENTER statement is not restricted to enterin

[=

11!
subroutines, it may be used to enter any sequence of statements or machine

instructions that provide for using the string of addresses and returning

31

to the statement that follows the ENTER statement when the "subroutine"
is finished.

Some examples of ENTER statements are:

ENTER (SINCOS)X)SINX)COSX %
ENTER(SINCOS)(*2.7)SIN 2.7)(COS 2.7)%
ENTER (ARCTAN)V,I-1)ATV)%

ENTER (MAT.MP)A1)B1)C1)3),I+1)6 %
ENTER(PRINT BLANK)%

10. READ and FRINT or PUNCH

General Forms:

READ(add.)(4dd.).....%

READ(count)NOS.AT(add./increment)%
PRINT-FORMAT(format add./subgroup)-(add.)...(add.)%
PRINT(add)...< string of characters > %

The READ statement allows decimal numbers to be read from cards
(or tape on BRLESC) and the PRINT (or PUNCH) statement allows decimal
numbers and/or alphanumeric characters to be punched on cards (or, on
BRLESC, to be put on tape). There is no difference between PRINT and
PUNCH, the type of BRLESC output depends upon the setting of a console
switch.and the use of SET.TO as a statement or subroutine.

The addresses of the quantities to be read or printed may be
specified as either a list of single addresses or by stating the total
number of numbers (count), the initial address, and the address increment
if 1t is other than one. The "count" must always be separated from the
address by the use of "NOS.AT" and the "count” is always the total

number of numbers actually read or printed (or punched) regardless of

whether the address increment is one or not. The count and address
increment are integer numbers and a symbolic address will be used as

an index register whether a comma precedes it or not.

The entire list of quantities involved in any one READ or PRINT
or PUNCH statement may be any combination of single addresses and
"NOS.AT" clauses. PRINT or PUNCH statements may also contain a string
of alphanumeric characters that will be punched in addition to any
numbers that are punched. The character < must precede the string and
the character > ends the string. Any character except > may be used
in a string and blank characters within a string are not ignored. A
string of characters cannot be continued (by using CONT, see page 52)
from one program card onto another. If a string is too long for one
card, it must be written as two or more shorter strings with each one
completely contained on a card. A string of all blank characters may be
indicated by just writing "n >" where n is a decimal or sexadecimal
number of blank columns to be inserted in the output. The n must be
preceded by "(" if it appears first in the PRINT or PUNCH statement.
For example: PRINT (7 >(A)21 >Bb wouid skip 7 columns, print the

nunber called A, skip 21 columns and: print the number called B.

The type and length of decimal numbers read or punched is controlled
by a format word. If no format is specified, then a standard format that
allows six numbers of twelve columns each on each card is used. The
input numbers may be either floating decimal with an exponent or with
a decimal point punched (or both) and are stored as floating point numbers.
(See FORM, T = 10 page 63). The standard output format assumes floating
point or integer numbers and will print six numbers of twelve columns
each. The floating point numbers will have exponents and an assumed
(not punched) decimal point to the left of the coefficient. (See FORM,

T = 9 page 63). (The standard floating point format for each number is

sign and eight digit coefficient with sign and two digit exponent.)

A non-standard format may be specified in any READ or PRINT
(or PUNCH) statement as illustrated in the third general form above. To

33

specify a format, PRINT (or READ or PUNCH) must be

(minus sign) and the next name enclosed in parentheses is the n

followed by a dash
of

It 1s suggested that the word FORMA'
The format address may be

i1s the

the first format word to be used.

L

be written between the dash and format name.

followed by a / and a subgroup integer number. The subgroup

A

numoer

of numbers that are %o

o

be punched or read on one card {(or on

group of cards). Whenever the subgroup number of numbers has been

read or punched, a new card 1s started and the format i1s started from

+ 1.

the beginning. A zero or omitted subgroup means that there isn't any
subgroup. The format address and the subgroup are not indexable

(ORDVAC restriction). (See FORM, page 59 for information on storing

fomn+ warda)
IatT wordsS, ;

The name "NOS.AT" must not be used as the name of a number

feal
(o]
o

+hat+ W 3
that NOS.AT may be followed by a

n used on input and output

the y(or 12) punch. For input, any number that is not negative is

positive and the standard output plus sign is a blank column. However

the meaning of the punches may be changed by using the SETMSI

SETMSO, and SETPSO subroutines

Signs normally occupy & column
punched." However they may be

leading digit of the number by

(for output) in an ENTER statement.

in an ENTER statement. (S
by themselves and are said
"double punched" (pu
using SETDPI (for input) or SETDPO

(See page 7). Note that double

onithe hi-speed printer, it would print
tandard sentinel card for READ

read except when the blank card is the first card read by a READ state-
ment. Thus a READ statement may be written to read a large amount of
data and the actual amount of data stored may be controlled by insert-
ing a blank card at the end of the data. (The maximum amount of numbers
that may be specified is 16383 but ORDVAC uses the amount modulo 4096.)
If it is desired that a READ statement should read no data, it is
necessary to insert two blank cards because the first card is ignored

if it is blank. The letter S (or the word STOP) punched in place of
a number on an input card also stops the READ statement from reading in
the same manner as a blank card does. (The S must not be punched in
the sign column for ORDVAC.) If a field is punched with the letter X
in any column except the sign column, no number is stored from this field.
The next number will store in the same place the previous field would
have stored. An "X field" will be counted in the subgroup count (if

ct

there is one) but not in the total number of numbers that is left in
index 9 and the next format type is used for the next field. Note that
an "X field" is a way of removing a number from the middle of a group of

s
numbers without repunching them. It is not a way of not storing a number

ct

in an address specified in the READ statemen

1.

new card is started within a statement only when the format or subgroup

indicates that a new card should be started.

After a READ statement, the number of cards (not counting blank
cards) read by that statement is always left in index 8 and the number

of numbers stored is left in index 9 as integer numbers.

The strings of alphanumeric characters allowed in FRINT or
PUNCH statements are entirely extra and are inserted on the card wherever
they occur in the statement. If the string occurs at the same place a
format word indicates a skip, start new card, etc., the string will be

punched before the format action occurs.

35

The format does not need to include anything extra to print the alphanu-
meric characters nor is ary part of the format word used or skipped while the
racters is being printed. A number printed after a string

of characters begins in whatever column follows the string on the card.

The symbols < and > may be used without parentheses between
them and the addresses of & number. As usual, the left parenthesis
preceding an address 1s optional after a right parenthesis or after >.
The dash (minus sign) must always be used both before and after a FORMAT
specification.

Some examples of READ and PRINT or PUNCH statements are:

READ(X)(Y)(2)% READ(24)NOS.AT(Al)%
l) fvr o)

READ-FORMAT(F4)-(8)(T)(16)NOS.AT(B1,1)%

']

READ(U)(V)4)NOS.AT(X/2)(A)B)J+2)NOS.AT(R1/I-1)%
PRINT(X)(Y)(Z)% PRINT < X IS TOO BIG> (X)%
PRINT-FORMAT(QT/3)-(K)NOS.AT(AL)(OKS)NOS. AT(M1,1)%
PUNCH< X =>(X) <Y =>(Y) <Z =>7%

PUNCH(4 > < HEADING > 6 > < RANGE > 5 > < HEIGHT > %

11. HALT
General Form: HALT (Display address)%

address 1is optlonal, but if 1t is used, it will be displayed in the halt
order. (It will be in the first address of a BRLESC halt order.) If
the computer is re-initiated, 1t will continue with the next instruc

or statement. If a problem is done running or can not run further for

some reason, a GOTO(N.PROB)% statement shculd be used instead of a HALT

statement.

w
()Y

Examples: HALT % HALT(3) % HALT(ONO)%

VII. PROGRAM CARD FORMAT

FORAST program cards are divided into four fields as follows:

Columns Use
1-6 Location field.

7 - 10 Order Type field.
11 - 76 Formula and Statement field.
77 - 80 Identification.

The location field (cols. 1 - 6) may be used to assign a name

to the first statement or constant that appears on the card. (See VIII
page3S J.

The order type field (cols. 7 - 10) is used for the "pseudo
order types" that provide translation information and may be used for
the order type of assembly orders. The order type fileld determines how
the rest of the card 1is interpreted and is to be left blank when the card
contains arithmetic formulas and/or English word statements.

The formula and statement field (cols. 11 - 76) is primarily
used for arithmetic formulas and English word statements. It may also
be used for assembly orders, numbers, translation information, comments,
ete. The meaning of this field 1s controlled by the order type field.

If this formula and statement field is not long enough, it may be con-
tinued onto the next card by using CONT in the order type field of the
next card. (See CONT page 52). This field may be terminated before
column 76 on any card by using "$%". (In some of the pseudo order types,

only one % is required to terminate it.) Comments may be inserted after

37

such a termination. The % after the last formula (or statement, etc.)
on a card may be omitted.

The identification field (cols. 77 - 80) is never used as part
of a program. Anything desired may be punched into these four columns.
To simplify the key punching of FORAST programs, it is recommended that
these four columns be used only for a decimal numbering of the program
cards. (This numbering may be reproduced rather than key punched on the
cards and need not be written by the programmer.) Error prints obtained
during translation of a problem will also print the identification field

of the card that contained the error. (See section XI).

VIII. USE OF LOCATION FIELD

The location field (cols. 1 - 6) may be used to give a symbolic
name to the first 1lnstruction or the first number that is coded from a
card or it may be used to specify an absolute storage address for the

orders and/or numbers that appear on the card and on the following cards.

The location field is ignored when it is blank. It 1is also
ignored when it has the same name (symbolic or absolute) as the last pre-
ceding non-blank location field. This allows extra cards to be inserted
in front of a card that has a location name and the location name
designates the first of the cards that have the same location name; this
facilitates insertion of a temporary PRINT statement for checking. If
some other location name is used between the two locations that have the
same name, then the code generated at the second location will be stored

over the code generated at the first location and will destroy it.

The location field controls an absolute machine address which

shall be referred to as the "location counter." This address normally

38

starts at 0100 (sexadecimal,01040 for BRLESC) and is advanced by one for each
machine word that is generated by the FORAST translator from the FORAST
program. If any decimal or sexadecimal absolute address appears in the
location field, then the location counter is set to that address. If this
is done, the old location counter address is not remembered by the trans-
lator and all following generated code will be stored consecutively

from the new address until a location field is encountered that will

cause the storing to begin elsewhere. Thus changing the location counter
may control the storage of many following cards, not just the card on

which the new location appears. If a symbolic address that has not yet
been assigned appears in a location field, it immediately becomes assigned
to the address that is in the location counter at that time. Thus t
assignment of machine addresses to all nsmes that appear in the location
field is done as soon as these names are encountered. If a symbolic
address that has previously been assigned (by being a previous location
or in a SYN or BIOC statement) appears in a location field, then the

location counter is set to the address that was previously assigned to

Special rules apply to names in location filelds that are within
d

viously defined "BLOC". (See BLOC page 44.) If an unassigned block

address is used in a location field, then the initial name of the block
is assigned to the current value of the location counter and the location

counter is then advanced to the actual address within the block that was

v v) %
X1 - X4 was defined as a

o]

used in the location field. For example, if
unassigned block and the location counter was currently at 0142 and then
if X3 was used as a location, X1 would be assigned 0l42 and the location

counter would be advanced to Ollk4, which is the address of X3, and the
next generated code or number would be stored in X3. Thus space is

allocated for a block up to the block name used but not beyond it. If

39

space should be left for the entire block, then the name of the last
cell in the block must be used in the location field. If a location
block address has previously been assigned, the location counter is
set to the actual assigned address within the block.

Increments may be used on symbolic location addresses. If
the symbolic address has been assigned, then the location counter is
set to that address plus or minus the increment. Thus A + 2 would
set the location counter to 0202 if A was previously assigned to 0200.
If the symbolic address has not been assigned, then it is assigned to
the location counter first and then the increment is added to or sub-
tracted from the location counter. Thus a positive increment on an
unassigned address causes the location counter to skip shead and a
negative increment causes it to be set back and probably causes some

previously generated code to be destroyed.

SELF is a symbolic name that may be used to refer to the
location counter. It cannot be used for any other purpose. If SELF
is used in any instruction or statement, it is temporarily assigned to
the current location couﬁter address. (In assembly orders, it is the
location of the order that it is used in.)

Since ORDVAC is a. single address computer with two orders per
word, it is necessary to have some special location field rules so that
the programmer will have some control over the storage of left and right
orders. Since BRLESC is a three address computer with one order per word,
the special rules in this paragraph do not apply to BRLESC. If a location
field on ORDVAC contains either an absolute machine address or an un-
assigned symbolic address that does not begin.with the letter R or a
decimal digit, then the next order coded will be a left order. If an

Lo

unassigned symbolic location address begins with R, then the next order
coded will be on the right side. If thke symbolic location address begins
with a decimal digit, the next order will follow the previous order and
hence may be either left or right. Thus orders that should be coded on
t side of a word should be given & location that begins with a
letter other than R and orders that should be coded on the right side
should have locations that begin with R. If the next order may be coded
on either side, then it is best (but not necessary) to use a location
name that begins with a decimal digit. The ORDVAC FORAST translator
+ l) conditional stop order whenever it inserts a
the next order will be on the proper side. These
special location field rules apply only when ORDVAC is generating orders,
not when constants and full words are being stored by DEC, SEXA, etc.
pseudo order types. These full word constants always occupy a full word
and the location counter will be advanced by a half word if necessary
before storing a constant. The CRDVAC dictionary listing prints L's
and R's to indicate left and right location names. OSELF 1is used as a
left location regardless of which side the location counter is cﬁrrently

on.

On BRLESC, symbolic index names must not appear in a location
field unless they have been previnusly assigned or used as an index register.
(Index register names get assigned on BRLESC as soon as they are used as an
index register.) If an assigned index register name is used in the location

field, the location counter is set to the assigned address.

It 1s not necessary for all symbolic addresses to appear in a
location field. The tramnslators automatically assig
all symbolic names that remain unassigned when the END of the program is
reached., This assignment of all of the rest of the unassigned names begins
ddress that is in the location counter after the END card (See
END page 63) 1s processed, hence the location counter must be left at some
address that has enough space after it for assignment to all of the un-

assigned names., This automatic assignment of addresses i1s done so that
all names have unique storage except for those names that appear within
SYN statements (See SYN page 48). Enough storage space is always left
for all blocks and when SYN is used to make a name in a smaller block

(or a non-block name) the same as one in a larger block, the larger

block is assigned first so that the smaller block will fall within the
larger block., If neither of such blocks is completely contained within
the other, enough space is left to provide storage for all of both blocks.
This machine assigning is done in the sequence the names appear in the
dictionary except for the names that appear in SYN or LAST pseudo order
types. {BRLESC will assign some and possibly all of the single variable
names between the constant pool and the subroutines). Hence if certain
names or blocks must be assi
programmer should use these names in location fields or on a "LOC" card
(see 1OC page u9) to insure that they are assigned to the proper sequence

of memory positions.

IX. Pseudo Order Types

The order type field (cols., 7 - 10) may be used for any of the

pseudo order types that are defined below. There are two major types of

pseudo order types; (1) there are those that do nothing but allow the

ogrammer to control to some extent the translation of his program and

~ g
"

} there are those to be stored as part

n

of a FORAST program. On every card, the order type determines the type

of information the translator expects to find in the formula and state-

mand
ucii v

]

11 - 76). The list of permitted pseudo order types is:

1o fidl
i< . O/« 210 240 eI'mi

1): PROB: BLOC: SYN: LOC: LAST: CONT: LIST: END: DATE: COMM: MODE: STOR:

NOS.: FTTS: ASGN: SUBR: O0.T. (2): DEC: DEC=: FORM: SEXA: ALFN

A PROBlem card should be put at the beginning of every

a L 400D

FORAST program to identify the program. It should contain the problem
number, the programmer's name (or at least initials), the approximate

rogrammed and a brief title or description of the problemn.

42

it is printed out ahead of the dictionary and/or the problem output to

ldertify these outputs.

For BRIESC, o PROB identification card is mandatory and a proper
problem number must be recorded on the PROB card after "PROB". A
program that does not have a PROB card before the first formula (or

the END card) will not be compiled or run.

he problem number, to which the computer time is to be charged
should be the first thing after column 10 and must not extend beyond
column 20. If other characters follow it before column 21, there must
be one of the following characters at the end of the problem number:
blank - + () % or comma. If any of these characters are inserted
before or between the first three characters of the problem number,

they will be iincred.

If more than ore PROB card is used in one program, the first one is
the one that wilil actually be used. The others will be ignored. (Any

PROB cards that have cols. 11-20 blank will be ignored.)

compiler and N. PROB subroutine make use of the real time clock to keep
P

a record of the computer time that is required to run each problem. This

record consists ¢f punching the PROB card at the beginning of the problem

with cols. ©1-7C replaced with the date and cols. 71-80 replaced with
the "start time". At the end of the problem, another card is punched

that contains the problem number in cols. 1-6, the "charge time" in
cols. 7-1C as hrs. and mins., the total time, the compile time, the
date, and the "stop time" in cols. 71-80. These two cards for each
problem will bve punched into a special hopper on the card punch unit

and thus will not appear wi h the normal outputs.

Whent the C. PROB subroutine is used to compile several programs
consecutively, the BRLESC time will normally be charged to the problem

number that ic on the PROB card in the last program. However, all of

L3

the PROB cards should have the same problem number and the PROB card of
the first program is the only one that will be punched for the time-
keeping record with the start time on it. The compile time will be only

for the first program compiled.

If you have a legitimate reason :or not being charged for running
your problem, a card having "NO CHARGE" in the cols. 11-76 field may

be inserted to cause the BRLESC charge time to be zero.

The location field of a PROB card is always used. A PROB card that
is blank in columns 11-20 is ignored except the location field is still
used. Example: PROB 647.1 J.Q. BROWN JULY 1961 AIR FLOW

B. BLOC

This is used to define the names and sizes of one or two dimensional
blocks of storage. Two dimensional blocks of storage will be referred

to as arrays.

One dimensional (linear) blocks are defined by writing the symbolic
names of the block followed immediately by the initial decimal integer
"subseript". (The word subscript will be used here to refer to the
decimal digits, however the subscript is written on the same line as
all of the other characters in the name.) Thus Al could be the name
of the initial cell of a block. A dash (minus sign) is used to separate
the initial block address from the final block address. The final block
address must have the same letters as the initial address but they are
followed by the final decimal subscript. Thus Al - A10 would be the
definition of a linear block of ten memory positions and each position
in the block may be referred to in the rest of the program by using the
names Al; A2; A3; Ah; AlO. Note that A and Al2 are not names that
are a part of this block and may be assigned memory positions that are
gquite different than those assigned to the block Al1-Al0. The initial
subscript may be blank or zero or any positive decimal integer and the

final subscript would normelly be larger than the initial subscript.

By

(Only BRLESC allows the final subscript to be smaller in which case

the smaller subscripts are assigned to larger addresses than the

larger subscripts.) If the initial subscript is blank (omitted), it

is used as zero but has the additional effect of allowing the initial
cell of the block to be referenced by no subscript or a zero subscript.
Hence if B -~ B6 1s defined as a block, the initial cell may be called
either B or BO.

| T

The complete block name, including the largest subscript,
must not be more than six characters on ORDVAC. On BRLESC, a total of

el

m

ht characters is allowed with the following restrictions; 1if the
block name is three or less characters, the subscript may be any 5
digits, for four letter btlock names, the subscript must not be larger

than 4095 and for five letter names, the subscript must not be larger

secutive memory positions unless the block definition is followed by
a / symbol and a decimal, or sexadecimal or a previously assigned
symbolic name (that may have an increment) that determines the spacing
between each element in the linear tlock. Hence TO - T20/2 may be used
to specify a linear block of 21 memory positions that uses every other
position, 1.e. if TO is 0200, then Tl is 0202, T2 is 0204, etc. If a
symbolic name is used to indicate the spacing, 1ts previously assigned
address (not its contents at run time) 1s used, i.e. the bloc spacing
is fixed at compile time. (A SYN statement would normally be used to
assign a symbolic name for this purpose.) Non~consecutive spacing is
allowed on linear blocks so that several of them may be "interwoven"

by using a LOC pseudo order type. (See LOC page .49).

A linear block definition may be preceded by "absolute
" "

2
I/". The absolute address will be assigned to the
initial name of the block and the "I" will cause the block to be

address /" or

assigned to index registers. (The "I/" is only necessary when the
block must be assigned to lndex register memory. Thus the full

general form of a block definition is:

(I or mach. add./initial name - final name/spacing)
Some examples of linear block definitions would be:

BLOC(B1-B22) (A-AL20)MAT 5-MAT 20)T1-T60/3)

BLOC(I/I1-I4)0600/3R-3R199)

Two dimensional blocks (arrays) may be defined and referenced
by writing a symbolic name and a row subscript followed by a comma and &
column subscript. Ml,1 - ML,k would define an array that has four rows
and four columns and requires sixteen consecutive memory positions. All
arrays must use consecutive memory positions and are stored by rows, i.e.
the names of consecutive positions of M1, 1-M4, 4 would be M1,1: Ml,2:
M1,3: Ml,L4: M2,1: etc. The initial and final row subscripts can be zero
or any positive decimal integer. (The initial column subscript must be
less than 64 and the final column subscript must be less than 256 plus

the initisl column subscript.) Arrays may be square or rectangular and

stored when SY. is used and the lower triangle is stored when LSY is used.
For SY. arrays, the column subscript must be greater or equal to the row

subscript and for LSY. arrays, the row subscript must be greater or equal
to the column subscript. SY. arrays may have more columns than rows (may

be augmented) but LSY. arrays cannot have more columns than rows.

The symbolic letter positions of array names should not have
more than fou

~
=

etters (small arrays of less than 64 memory positions may

Y
he letters should be different than the

A N
general y n

= P I - « -
ive letters) and th

g

ave
letters used for any linear blocks. (FORAST translators handle array
addresses by "linearizing" them and linear block names must therefore be
h

1
different than any array address that has been "linearized. Thus Ml

2ilis L)

is the same as M4,3 in the array Mi,1-Mi, L and must not be a part of any

46

linear block.) Arrays cannot be assigned to index register storage.

Some examples of array definitions are:

BLOC(R1,1-Rk,6)(0800/AT1,1-AT10,5)
BLOC(BQ1,1-BQ10,11/SY.)MAT-MATS,5/1SY.)

Afray addresses may be indexed by using a second comma
after the array name followed by an index register name. Thus R1,1,I
illustrates the method of indexing R1,1 by I. If the index register
address used to index an array address is decimal or sexadecimal, it
must be enclosed in parentheses. Hence R1,1,(10) is the way R1l,1 can
be indexed by index register ten. (Note that R1,1 would be Rl indexed
by index register one if Rl,1 was not defined as part of an array.)
Indexing in FORAST should not be thought of as variable subscripts, it
is simply the addition of a variable integer to a primary address that
determines the actual address used at run time. This means that Al is
not necessarily the same as A,I when I contains a one, they are the
same only if the initial cell of the block is called A. If the initial
cell is called Al and it is desired to reference Al,A2, etc., then it
should be written Al,I where I assumes consecutive integer values start-
ing at zero. This emphasizes the fact that the subscripts used with
the letters of a block or array name must "fall within" the block or

Pl an o an 2 eTas) at=% oo} ~
he name is & member of the block or array.

array before t

A block or array definition (BLOC card) must precede any
reference to members of that block or array. It is wise to define all

blocks and arrays before writing any other symbolic addresses.

Columns 11 - 76 of a BLOC card may be used to define one
or more blocks or arrays. Successive definitions should be separated
by a right parenthesis (a left one is optional) and a "%" may be used
er the last cne toc ignore the rest of the card. The locatisn field

should not be used.

=
=]

C. SIN
This may be useéd to assign absolute addresses to symbolie

names or to allow different symbolic names to be assigned to the same
memory space. For some problems, the memory may not be large enough
to allow a unique position for each and every number, thus it may be
necessary (to avoid using drums or tapes) to use the same memory
position for more than one number when such numbers are not needed at
the same time. A and Q normally would be assigned to two different

marsmcamn ATl T 2 Tidk 2O A g o
Cmory Cclls vuL 11 A 18 C

i r used before § is
computed, then it would be all right to store Q in the cell that pre-
A

viously contained A. SYN statement of (A=Q) would cause the symbolic

names A and Q@ to he aggsioned to the game memorv rcell
ARSCs A SUl g VW VT aoolpdll VO LAC Sadilc alidly (LLad.

Each synonym definition is of the form:

(AG@d. = Add. = = Add.)

_____ L W, S W T3

Iy wm L crnne darmm AL AAAnme & a f VLo ol o 2\
where Add. may D€ any 1ype Ol &aadress allowed L{apsolute Or symbolilc)

but increments cannot be used in a SYN statement. Addresses within

blocks or arrays may be used. The same effect as increments can be
ne Or mo
SYN statements to obtain the desired storage arrangement. However the

LOC pseudo order type is usually sufficient for this purpose. (See LOC

SYN cannot be used to reassign any address that has been
iom (

ust not be more than

\SGN page 73). There
F ot =) L

one address in each synonym definition that is an absolute address or

has been previonsly assigned. As soon as any one name within one

synonym definition becomes assigned, then the other names are assigned

48

The addresses in SYN definitions are always assigned
properly (no unexpected overlapping of storage) if the machine assigns
the first address in that definition after the END card. However, if
the programmer causes one address in a definition to be assigﬁed by
using it in a location field (or another SYN statement, etc.), then
the other addresses are assigned accordingly without any checks for

rage. When the machine assign

a nama +h
Qa LIGdUC VL

[}

in a synonym definition, it allows enough space for all of the blocks
or arrays that are assigned because of the synonym definition and
smaller blocks or single names are always assigned within the larger
blocks.

Each synonym definition should be separated from the next
one by a right parenthesis though a leading left parenthesis is optional.

A "%" after a definition causes the rest of the card to be ignored.
Some examples of some SYN definitions are:

SYN(A=B=C)R=20)K1, 4=DELTAV %
SYN(G14=E10=F1=T)(T=T1=Q)

The location field of a SYN card should not be used.

The ORDVAC FORAST translator has a limit of 64 (55 if the
computed GOTO statement is used) unassigned symbolic names that are
used in SYN definitions. Thus an ORDVAC program must not use more than
64 (or 55) names in SYN definitions until some of them are assigned.

BRLESC allows 288 vnassigned SYN names.
D. IOC
A I0C card allows many "locations" to be spec
card. The location field is first processed in the normal way and then

the addresses in cols. 11-75 are also processed as "location fields".
(See VIII page 38).

k9

A IOC card allows a programmer to cause a list of symbolic
names to be assigned in a desired sequence. Successive names will

or array names, increments, and previously assigned addresses may cause
non-consecutive assignment. Note that space for the symbolic names 1s
allowed where the LOC card appears in the program and the location

i

Yo 4 A b o T
counter 1s advanced by one beyond the last space assigned on that LCC

card.

card is to define the
desired sequence of "interwoven blocks”. To cause (X-X20/3)(Y-Y20/3)
and (Z-2Z20/3) to be interwoven blocks (a spacing of 3 must be specified
in a BLOC statement), (X)(Y)(Z20) must be specified in a LOC statement.
Note that the first name of a block is used for all blocks in an inter-
woven string of blocks except the name of the last cell in the last
block is used. The example above causes X to be assigned to the
locatien counter, the location counter is advanced by one and Y is
assigned. The location counter is agaln advanced by one, as 1t is
after every address on a LOC card, and the Z block is assigned beginning
at the current address in the location counter. Then since Z20 was
written instead of Z, the location counter is advanced to Z20 and again
advanced by one before assigning or storing anything else. Hence the
use of Z20 allows space for all the Z's which includes space for all

s. The sequence of these block names 1n the memory

e

the other X*s and Y

would be X,Y,2,X1,Y1,21,X2,Y2,22,X3,Y3,23,....,X20,Y20,220.

Only one address may be written in the normal location field.
Each address in cols. 11 - 76 must be followed by a right parenthesis with
an optional leading left parenthesls. A 4 after the last one will cause

the rest of the card to be ignored. Increments are allowed. A blank

location field, or more than one right parenthesis between names

4+t e | + 4
causes the location counter

cause two blank locations to be left between A and B.
Some examples of LOC cards are:
X Loc (Y) z20) R1) s1) T300) Q) TL %
P 1OC (Vi)(v2)3AA) %

(21-210) to be stored consecutively providing none
has been previously assigned. The same effect using
the "false block" technique is achieved by defining

o

1
"ralse" BLOC{F1-F30) then SYN(F1=X1){F11=Y1)(F21=21)

This pseudo order type may be used to tell the translator
that a certain block (or several blocks that are interwoven) or one
array should be assigned after all other storage has been assigned. It
allows a programmer to reserve the "rest of the memory" for some data
that is of indefinite length. Thus a programmer may allow as much
space as possible for a specific purpose without knowing ahead of time

Just how much space is avallable.

The name or names that should be assigned iast are to be
written in cols. 11 - 76 and separated by a right parenthesis. There
can be only one array name or there can be several block names if they
have non-consecutive spacing {interweaving) in the BLOC definition.
There can 8lso be a 1list of names or just one name that is indexed in

a

the running program to access or store the rest of the data. If

~

or array name is used, any name within the block or array may be used

If more than one block name is used, the first elements of each block
names are assigned to consecutive positions regardless of the subscript
used. (It is not necessary to use the last subscript of the last block
named.) Since a LAST card essentially assigns a "block of storage",
the name(s) need not also be defined on a BLOC card unless the program
explicitly uses the names of elements in the block other than the name
of the first element. BLOC definitions must always have a numerical
maximum subscript, but for those block names that are used on a LAST
card, the BLOC definition need only include the largest subscript
actually used anywhere in the program.

If several names are written on a LAST card, they are
assigned to consecutive positions in the same seauence they are written.
If other names have been defined as synonyms (SYN) of LAST names, then
they are not assigned until the LAST names are assigned.

There is & restriction of & maximun of 63 names on a

LAST card. (BRILESC allows 111 names.)

The location field should not be used and a % after the

last name causes the rest of the card to be ignored.
Some examples of LAST cards are:

LAST Al,1 %
LAST (X1)Y1)Z1)

F. CONT

This pseudo order type should be used when it is necessary
to continue from one card onto the next card. Columns 11 - 76 of a CONT
card continue from column 76 of the preceding card. The translator
assumes 8 % character after column 76 of each card except when the next
card is a CONT card. It may be used after any card that uses columns
11 - 76 except that it cannot be used to continue a "string of characters"
in a PRINT or PUNCH statement.

must be used whenever a statement or formula is
started on one card and completed on the next card. A CONT card is
ignored if column 76 of the previous card was ignored, thus comments

mey be .continued also

The location field should not be used. There is no limit

t

(o]

~ 17 Award
r of successive CONT cards allowed.

A LIST card may be used to tell the translator to print
a "dictionary" that shows the assignment of all symbolic addresses for
the program that is being translated. The dictionary 1is not printed
unless a LIST card is inserted somewhere in the program (or the trans-

lator finds an error in the program).

A sexadecimal listing of the code may also be obtained
by writing "S. CODE" in columns 11-T6 and a binary card program
ained by writing "B. OOBE" in columns 11-76. On
BRLESC, if a program is written for use as a subroutine (with key words,
relative addresses, etc.), "B.SUBR" may be used to obtain a binary
deck suitable for use as a standard relocatable subroutine. "NO DICT"
is also allowed in case & dictionary is not desired when obtaining a
sexadecimal or binary print of the program. All other names on LIST
cards are ignored. If more than one type of listing is desired, the
names may be on the same LIST card separated by a right parenthesis or

they may be on separate LIST cards. A "B.CODE" print is not done if a

"B.SUBR" print is done for the same program.

Each line of an "S.CODE" listing from BRLESC consists of
a location address followed by four words that are stored beginning

at that address. It 1s a "memory dump" type of print that shows t

vy e il

¢

program as it is stored in memory. It includes index registers 008-03F

23

and from 080 to the beginning of the subroutines. Any line that would

only show four zero words is not printed.

A B.CODE print is a memory dump onto binary cards and it
includes the subroutines used by a program except for the decimal input-
output routine. To use this deck to run a program, a program input
routine must be placed in front of it and the decimal in-ocut routine
must be placed behind it. The last card of this program deck must be
a key word that jumps to 073. Since the BRLESC translator is extremely
fast, the use of binary decks is unnecessary. (For some problems, it
will take longer to read the binary deck than it would take to read and
translate the symbolic deck.) A B.CQDE print includes OOK-0O3F; 058-06L;
07J-07L; 08S0-S9L and 01040-end of memory except for the next to last group
of 4096 cells. (Zero words are not punched.)

On BRLESC, a B.CODE or B.SUBR print is done between the
dictionary print and the S5.CODE printing. The binary cards will always
have a y punch in column 80 and will be separated from the other cards
by a blank card.

On the ORDVAC, sexadecimal print is a memory dump of O4O to
the beginning of the subroutines and prints eight words per card with a
"range card" at the beginning of each group of cards. The range card
specifies the first and last locations of the following group and no
group exceeds 256 words. Cards that would show only eight zeros are
not printed when there is more than one such card in succession. These

sexadecimal cards should be listed on the 1401 to get extra spacing.

The ORDVAC binary print is a memory dump of 000-009; 0O40-J7L
and OLN1-OINJ. To use this deck, it must be preceded by a program
input routine (5 key Input Routine) and the decimal input-output routine
must be inserted in front of the last binary card. (The next to last
card of the binary deck ends with a OJJO store key word and the last
card ends with a key word that jumps to 009.)

Sh

When the dictionary is listed on either computer, four
symbolic addresses are listed on each line and the dictionary is in
alphabetical order by columns. (The numerical value of the six bits

used to represent each character determines the alphabetical order,

hence the characters zero and prime are between R and S and a decimal
point is between I and J.) Each symbolic name is followed by its sexa-

decimal assigned address and this may be followed by any of the follow-

L - Location name. (Left location on ORDVAC)

R - Right location on ORDVAC.

B - Block name. (Both initial and end names appear in the

dictionary, the assigned address printed with the end
is the spacing within the block).

A - Array name. (The linear equivalent of both the initial
and end names of an array appear in the dictionary. The
assigned address printed with the end address contains
the length of a row as the last two sexadecimals and is
preceded by the initial column subscript.)

- Appeared in a SYN statement.

- Machine assigned address.

Index Register name. (BRLESC only)

- Function or Subroutine name.

S H H 2 W0
1

- Unused name. (This means that the name appeared only
once in the program and may indicate a programming or
key punching error. It does not keep the program from
being run.) A dictionary may be listed on the hi-speed

printer or on 1401,

55

The dictionary will include two extra entries at its end.
One is %NOS. with an address that indicates the end of the constant pool.
The other one is $SUBS. with an address that is the beginning of the sub-
routines. BRLESC will also print %INDEX with an address that is one more
than the last index register used by the program.

The location field of a LIST card should not be used. Some
examples of LIST cards are:
LIST N

LIST(B.CODE)(S.CODE)%

H. DEC
When this pseudo order type is used, columns 11-76 may be
used to write one or more decimal number that are to be converted to

. . ‘s .
in consecutive memory positions beginning

o

binary numbers and store
at the address in the location counter. Thus the location field may
be used to specify the address or name of the first number on a DEC card.
Esch number should be separsted from the fellowing one by a right

thesis, a leading left parenthesis is optional. A % after a number causes
f b

the rest of the card to be ignored. Extra right or left parentheses
do not cause memory space to be skipped. Commas and leading zeros may
be used on any part of any number.

(2) fixed fraction, and (3) integer numbers. Any type of number may

be written anywhere on a DEC card.

1. Floating point numbers have the general form of

[}

F+dd d+e

where + dd..d is the coefficient and + e ... e is a power of ten

56

exponent and may be omitted if it 1s zero. The leading F is not
necessary if the MODE arithmetic (See MODE page 69) is floating point.
The leading + sign on the coefficlient is optional., A decimal point
may be punched anywhere in the coefficient, but if none is punched, it
will be assumed to be at the right end of the coefficient.

If the MODE arithmetic is floating point then all of the

following examples are floating point numbers:
DEC(10)F-4.1).92-04)2,462,147)-1.45 %

On BRLESC only, an exponent may be started with an E and
floating point numbers may be followed by a U and a positive integer
d

ower of ten by which the number should be unnormalized.

2. Fixed point fractions may have the general form of
X+dd ¢*°* d + e.ce B+seesD+reer
where + e*+e 1is a power of ten exponent, + s¢-s is a binary scale
factor and + re-r 1is a decimal scale factor. The exponent, both scale

factors and leading + signs (except on the exponent, to show where the

exponent begins)are optional., The leading X 1s optional if a Bor D
scale factor is specified or if the MODE is fixed point arithmetic. ORDVAC

fixed point fraction numbers must be less than one in absolute value after

the scale factors are applied, ERLESC fixed point fraction numbers may be

as large as sixteen in absolute value. If the MODE 1s fixed point, fixed
point fractions must have either a decimal point in the coefficient or a

scale factor. If the coefficient does not contain a decimal point, it

= m rm o o vemmm 0] e ~ mad ~alad
111 be assumed at the right

Examples of fixed point decimal fractions are:

{

DEC(Xk.2B-5)-31.7B-3D-2)+.17-2B+2) %

I+dd.--ad

vhere the + sign is optional. A leading I must be used when the MODE
is floating point arithmetic. A decimal point is ignored when a leading

I is used. A decimal point is not allowed if the I is omitted and the

N ct
Yol

MODE is fixed point arithmetic. Integers are scaled at 2“7 on ORDVAC
and 2~°° on BRLESC. ("Integers" with other scaling can be written as

Examples of integer numbers are:

DEC(I10)(I-147)I+k1)I24,861 %

I. DEC=
This pseudo order type is Jjust like DEC explained above except
it allows each number to be preceded by a location name and "=". Thus
the general form of each number is:
Loc. name = any DEC number
DEC = 8llows each numbher to b2 given a name without generating

any running code or using a separate DEC card for each number. Each

number must be preceded by a "name =", or just

if no name is to be
given to a number. Each number is separated from the next one by a
right parenthesis with a leading left parenthesis optional. A % causes
the rest of the card to be ignored.

Some examples of DEC = cards are:

DEC
DEC

(X:’-l., 7) (J3=113)EPS:, 3-6)Tx=x. SlB-)-l» %
(A1,1=1)(A1,2=17.4)A2,1=-6)A2,2=49.1 %

it

The Pirst characters on either a DEC or DEC = card in columns
11 - 76 may be either ORDVAC or BRLESC. If one of these names is used,

then the numbers on the card are stored only on the machine whose name

58

was used. Thus it is possible to write one program that uses different
constants on different machines. This is sometimes desirable because
of the difference in word length (68 bits vs. 40), difference in float-
. e 5 o +38
ing point number range (10— 55 vs. 109), difference in speed (20 to 1),
etc. between BRLESC and ORDVAC,
J. FORM

This pseudo order type may be used to specify FORMAT words
that may be needed for READ and PRINT or PUNCH statements. The FCORMAT
words are used to describe the type of each field, (T),the length of

may be used to give a name to the format being specified.

field definitions may be written

npnnrated hv a ri°h+ parpnt esis
. a 17 11 1y Pl v W
thesis. A % causes the rest
Ea field definition
(T)
(m,n\
T-L)
— em e A
(T-8-L)
T,S, and L may be speci
numbers. (

a field definition are separated

<256.

(Sexadecimal numbers must have a leading zero.)

Successive
in columns 11 - 76 with each one

with an optional leading left paren-

of the card to be ignored.
y have one of three forms:
Just a type

type and length

type, scale factor and length.

hv decimal or

A

gsexsdecimal

Numbers within
by a dash (minus sign).

If there are no previous repeat types

n the format, it is repeated from the beginning.

59

3

If more numbers remain to be read or printed,
the format is repeated from the beginning and

& new card is begun, If any FORM card does not
have a 2 type as its last type, the translator
automatically adds a 2 type unless the next card
is a CONT card. Thus if a single format defini-
tion requires more than one card, all cards after
the first one should be CONT cards. S and L are

not used.

Skip L columns where L < 256.
Integer fleld.

Input: Read an integer that is punched anywhere
(may include the sign column) in I columns and

tore the number as an integer (L <256). Blank

n

re
olumns before and af

Q

ter the lnteger are ig

Digits to the right of a decimal point or t

right of a blank column in the middle of the
h

s
3

number are ignored. The sign may be punched
any column of the field that is above or to the
left of the leading digit.

Qutput: Take an integer number from the memory

and print it at the right end of L columns. The
sign will be punched in the leftmost column and
will not be double-punched (a sign and digit in
the same column) unless the double punch option
is being used. Columns to the left of the
integer will be blank.

60

tt

(oY

Print card counter.
Input: Skips L columns. (L < 16)

Output: Increase the absolute value of the card
counter by S and print it in L columns, The card
counter is kept as a fixed point fractional

number (at 067 on BRLESC and 0JJ2 on ORDVAC)

scaled at 10”7, The length of the counter field

) MR | Py
should not be

u

to zero. (The ZEROCC subroutine should be used
to set 1t to zero.) If the output does not use
the whole card, the counter is printed at the
right end of the card regardless of where the
format might say it should be printed. It will
not be printed if there are not enough columns
left to print it. The coun
and leading zeros are printed.

Fixed point fraction.

Input: Read a fixed point number from L columns,
assume a decimal point after S columns from the
left, (not counting the sign column if single
punched signs are used) and store a fixed point
fraction number. If a decimal point 1s punched
it is used instead of the assumed
point after S columns.

Qutput: Take a fixed point fraction from the
memory and print it in L columns. S 1s ignored.

61

SR . . T

the memory and print it in L columns with a
decimal point printed after S columns. (The
number printed will always be on the right of
the decimal point except on BRLESC where the
number can be as large as sixteen.) Ieading
zeros to the left of the decimal point are

printed.

Alphanumeric

Input: Read and store the six-bit representation
of the characters punched in L columns. Only the
rightmost 60 hits of BRLESC words are used to
store alphanumeric characters. If L < 10, the
characters will be in the left portiocn of the
sixty bits. If L > 10, the characters will require
more than one computer word and will use as many
consecutive memory cells as are required. Each
new field starts exactly at the address specified
in the entrance sequence regardless of the length
of the previous field and begins storing in the

left part of that word.

For ORDVAC, the rules are the same except the
rightmost 30 bits of ORDVAC words are used and
hence a maximum of 5 characters are stored in
each word. A new consecutive word is used after

1.

each group of five characters are stored and the
number of characters stored is not necessarily

a multiple of ten.

Qutput: Teke L alphanumeric characters from the
memory and print then in L columns. Characters
are taken from left to right from the rightmost
60 bits of BRLESC words. If L > 10, characters
are taken from the next consecutive word or words

until I, characters have been printed.

62

For ORDVAC, the characters are taken from the
rightmost 30 bits and a new consecutive word is

used after each group of five characters.

Note that for both input and output, only one
address is used from the list in the READ, PRINT

or PUNCH statement for eac

- LY, (V=3 giit

[y
—
.y

=

5

D

H

[

0
-4
o
D
—
2

regardless of its length.

T=29 Floating point number with exponent.
Input: Read and store a floating point number

from LI columns where the last 3 columns (2 columns
if use double punched signs) contain an exponent.
A decimsl point is assumed after S columns. If
any column actually has a decimal point punched,

it is used and S is ignored.

4

rom the

OQutput: Take a floating point number m the
memory and print a floating point number in L
columns with an exponent in the rightmost 3
columns (2 columns if use double punched signs).
The exponent is decreased by S before printing
but a decimal point is not printed after S
colums. ILeading zeros of positive exponents
are not printed and the coefficient part of the
number never has leading zeros unless the number
is zero. A zero number will print a coefficient

of all zerco characters.

The standard FORAST output format defines 6 of

these 9 type fl elds of 12 columns each.

= 10 or 0K Input: Read a number from L columns and store it
as a floating point number. The number may be
punched in either fixed point form or floating

h
point form with an exponent. Blank columns are

63

+3

'-_l

'--l

Q
2}

ignored and either coefficient or exponent may
in the field. If there
begin after the first
sign that occurs after

is an exponent, it mus

Q& ot

blank column or punche
decimal point is assumed
after S decimal digits that are punched for

the coefficlient or if a decimsal point has been
punched on the card, it is used and S is ignored.
Signs may be elther single punched or double
punched regardless of how this option is set
except that a zero must not be punched under a
sign (BRLESC restriction). (The zero would be

used on ORDVAC and ignored on BRLESC.)

This type of field is used as the standard FORAST
eld. The standard

input format defines

6 of these 10(or OK) type fields of 12 columns

each.
utput: Take a8 floating point number from the
memory and print it as a floating point number

with an exponent in the last 3 (2 if use double

punch signs) columns and a decimal point printed

ber from L columns

and store it as a floating point number. A
decimal point is assumed after S columns of the
number. (Don't count a single punched sign
column). If a decimal point is punched on the
card, it 1s used and S 1s ignored.

Output: Take a floating point number from the

memory and print it as a fixed point number in

T = 12 or ON

L columns. The number is aligned, if possible
so that its decimal point is after S columns of
the number but the decimal point is not printed.
decimal point, the decimal point will actually

be printed where it belongs. On BRLESC, if the
decimal point falls outside of the allotted L

columns, the number is printed as a floating
number with an exponent (if there are enough columns).

Leading zeros are punched.

Input: Not allowed on ORDVAC input. On BRLESC,
it is the same as type 10(OK) except when nc
decimal point is punched in the field, it is
assumed to be at the right end of the number. (S
is ignored)

Output: This is the same as type 11(0S) described

above except that the decimal point is actually

printed and leading zeros are not punched or printed.

Input and Output: This indicates "end of card (or

line)". A new card (or line) is started without
starting at the beginning of the format. This
allows multi-line formats to be written without
the necessity of using all of the columns on each
line. If this type 14 is used at a point where a
new line would begin anyway, then it is ignored.
This means that a type 1lb4 at the beginning of a
format is useless and successive type 1l4's do not
cause any blank lines. At least one column must
be used or skipped between 1lh's to get a blank

line (or read an extra card.)

65

When a type 14 is used in conjunction with a sub-
group specification, the subgroup count dces not
start over at a type 1l4; it continues counting
and causes a new line and the re-use of the

beginning of the format when it is exhausted
T = 15 or OL Input: Not allowed.

Output: Allowed only on BRLESC when the F.T.PR
(firing tables print) subroutine is beiny used
by the insertion of a SYN(F.T.PR = F.T.PR) state-
ment in the program.

This format type can be used to change the
sign option or the double punch option anywhere on
a card. S is a six bit character (written in
decimal or sexadecimal) that will be used for the
plus sign and L is a six bit character (written in
decimal or sexadecimal) that will be used for the
minus sign. (A y row sign is 010 or 16 and an X
row sign is 020 or 32.) A fourth number of O or 1
may be specified after the L to indicate the setting
of double punched or single punched signs respectively.
All of these options apply only for the current
PRINT or PUNCH statement, a new statement returns

them to their previous values.

F.T.PR Modifications:

When the F.T.PR subroutine is used on BRLESC, (by insertion of a

SYN(F.T.PR = F.T.PR) statement in the program) the above rules and
O

formats are modified in the following ways: .

1. Adding O4O or 64 to any of the format types that control printins
of numbers will cause a sign that is the opposite of the actual sign of il

number to be printed in an extra column at the right end of the number.

This extra column will not be included in the number of columns specified
by L. The normal sign will precede the number and 1f the number is zero,

neither sign is printed.

2. Adding 080 or 128 to any of the format types that control print-
ing of numbers will cause the leading szign to print immediately to the left

of t'ho b 't of the number: .

. . 1 3
; 1.e. it prints a "floating sign

3. All numbers will have at least one digit printed in front of the
decimal point. For numbers less than one, a zero will be printed before

the decimal point unless there isn't space for it.

L, A number printed as zero will not have any sign printed.

5. A floating point number greater than lOSl will cause a blank

e printed in its place.

6. All numbers will have leading zeros printed as blanks up to the
decimal point or the first non-zero digit, with the exception of one

zero digit immediately before the point.

K. SEXA

This pseudo order type may be used to store sexadecimal

constants. Columns 11-76 may be used to write one or more sexadecimal

constants with each one enclosed in parentheses. (The leading left

__________ g lef
parenthesis on each one is optionai.) A % causes the rest of the card

/’;g oY)

to be ignored. The first symbols appearing in columns 11-76 may be
either "ORDVAC" or "BRLESC" and will cause the card to be processed only

on the computer whose name was used. Since ORDVAC words are ten sexa-

decimal characters long and BRLESC words are seventeen sexadecimal characters

long, it is usually necessary to write separate cards for each computer.

67

The characters O to 9 and K,S,N,J,F,L are used to
represent the sixteen sexadecimal digits. If a constant is written
with fewer characters than required to make up one computer word, the
digits will be placed at the right end of the word, thus (3) is the
same as (003) and is also the same as an integer number 3. The
character Z 1s also allowed but may be used only once in a constant.
The Z represents a string of zeros that is long enough to fill out
the computer word. Thus (6Z8) will mave a leading 6 followed by zeros
until the last digit which will be an 8. A Z may be used to replace

one string of zeros in a sexadecimal constant.

The location field is used as the location of the first

constant on the card.

Some .examples of sexadecimal constants are:

SEXA(52K)921JOF4L)4)
SEXA BRLESC(032 ZA4K)KKZ)ULL)%

On BRLESC only, an A may be used to represent five sexa-
decimal zeros and an M may be used to represent five sexadecimal L's

(fifteens) in sexadecimal constants.

L, END
The last card of every program must be an END card. It

causes the translator to stop reading symbolic program cards, to complete
the translation of the program that has just been read and to then start
running the program. Cols. 11 - 76 may contain a GOTO statement that
specifies the location of the first statement or instruction that is

to be done in the running program. If no GOTO appears, a GOTO (0100)

is done on ORDVAC and & GOTO(0104C) is done on BRLESC. Iiote that the
first statement to be done does not have to be the irst physical ciatoe-
ment in the program. A % causes the rest of the card to be ignered.

BRLESC allows GOTO(N.PROB) or GOTO(C.PROB) to be used on the END card.

The location field of an END card is used in the normal

way. If it 1s not blank, it specifies the location at which the machine

begins to assign the symbolic names that were not assigned by the pro-
gram. (This machine assigning always starts with the address in the

location counter after the END card has been processed.) O

=]

RRT.RQN
Lo,

when this logation field is not blank, &ll of the machine assigning
will be done from that address.

Some examples of END cards

This pseudo order type allows the current date to be punched
in columns 11 - 20. This date information will be printed out in front

of the running output and also in front of the dictionary when it is

Example: DATE AUG 5,65
N, COMM
This pseudo order type allows columns 11 - 76 to be used
for comments. The entire card is essentially ignored. (The location

This pseudo order type may be used to specify the type of
arithmetic (f1. pt. or fixed pt. fraction) that is most used in the pro-

follows. It controls the type of arithmetic and number con-

®
B
cr

version in arithmetic formulas and DEC numbers that do not explicitly
specify a different type of arithmetic.

[

£ n
I N

(o]

",

I0ODE card 1s used; the mode is automatically set to
floating point and thus a MODE card is not usually needed. To set the
mode to fixed point fractionel arithmetic, columns 11 - 76 of a MODE
card should contain FIX(or just X). To set the mode back to floating
point arithmetic, FLT(or just F) should be used in columns 11 - T76.

Each MODE card is effective until the next one, however it generally
isn't necessary or desirable to use many MODE cards. Note that the mode

cannot be set for integer arithmetic.

The mode is not used on ORDVAC assembly orders, thus an
ORDVAC assembly order is nct floating peint unless 1t begins with an

F. (See page 108). The mode is used on BRLESC arithmetic assembly orders
except the shift order. If a BRLESC A,S,M,D,C,SQRT, or PMA order does

[
(S
(@]

[

tly have an F or X parameter specified, then the mode is used
to set the order to the type of arithmetic that was specified on the last
MODE card. A MODE designation of FU may be used on BRLESC to indicate
"unnormalized" significant digit arithmetic. (An FU mode on ORDVAC is

the same as FLT.)

The mode setting affects only the conversion of numbers on
DEC (or DEC =) cards and the translation of the arithmetic operations in
formulas. It does not change the type of subroutines used. Since practi-
cally all of the standard subroutines included in FORAST do normalized
floating point arithmetic, new subroutines with new names must be added
before subroutines can be used in fixed point or unnormalized floating
point modes of arithmetic. It must also be remembered that exponentiation
of the form A¥¥B uses the floating point POWER subroutine whenever B is
symbolic or is a non-integer number whose fractional part 1s not .5 or is an

integer larger than 15.

-]

@

The location field should not be used.

Examples: MODE FLT
MODE FIX

P. STOR

This pseudo order type may be used to specify a loca

at which the following code should be stored. It uses the location fileld
in the normal way or if it is blank, it uses columns 1l - 76 as a location
field. Thus a ST(R card may be used when one wishes to specify a location

that requires more than six columns. A STOR card does not cause space to

be left, putting & location on a STOR card is the same as putting it on

the followling card.
Examples: STOR 0800
STCR AA.5 + 17
Bl STOR
Q. TNWOS.

This card may be used to move the memory space
translator uses for a "constant pool". Constants that are written in
formulas (and other places where a store address is not provided) are
stored in this "constant pool". This normally starts at O40 on ORDVAC
and 0SO on BRLESC. A different starting machine sddress may be speci-
fied in columns 11 - 76 of a NOS. card. This specification must be

made before any constants are stored and should normally be done before
the first order of the program. The "constant pool" cannot be moved
very far. Since it must stay in the memory during translation, it cannot
place that would destroy a part of the tramslator. On BRLESC,

o
(¢
2
ct
~<

it must stay between 0S0 and 020L or 01200 tc 01800 and on ORDVAC it
must stay between O4O and 029 On ORDVAC, the maximum size of dictionary

1.

allowed is reduced when the constant pool is moved down (larger
address) in the memory. If the constant pool goes beyond OLL (or
01040 on BRLESC), then the location counter must be set so that

it begins at an address that is larger than the usual 0100 (or 01040

for BRLESC)starting address.

2
Q
#7]
(@]

.
"
(

Examples:

A
4
]
]

(@)
wn
o

This order type may be used to change the temporary storage
that translated formulas will use in the running code. The ORDVAC

normally uses 020-03L for this purpose and BRLESC uses 090-OKL. Columns
11 - 76 of a FTTS card may contain a machine address that will be used

(While 32 words are reserved for this purpose, most formulas do not
require more than four or five words for temporary storage.) Each FTTS

card is effective until the next one.
The location field should not be used.

FTTS cards are not needed in most programs. They are only
needed when formulas are used to code a single valued function subroutine
that will be used in other arithmetic formulas. In such a case, two FTTS
cards are needed; one at the beginning of the subroutine to move the
temporary storage away from its normal place and one at the end of the

subroutine to set it back to normal.

Note that the same FITS cards will not usually work for both
ORDVAC and BRLESC.

Examples: FTTS 010
FITS 020

T2

S. ASGN

This pseudo order type is the same as SYN (See page L4k4)

except there is no check for reassignment. It should be used only when

it is necessary to change the assignment of a previously assign

(ll

This pseudo order type 1s the same as ASGN except that the
3'e

as subroutines (except for single names). However

it is recommended that SUBR be used only to define the names of single

valued function subroutines that are coded as part of the program and

0

2]
(1
o
(]
et
'-‘o
o}
Hy
g
[+:]
n
e
o]
ot

he main part of the program. Such names should

be listed in columns 11 - T6 with each name enclosed in parentheses. A
% causes the rest of the card to be ignored. These subroutine names
must be at least three characters long and will not be marked as sub-
routines in the dictionary listing. The SUBR card must appear in the
program before the names are used in formulas.

Example: SUBR (FIX)(F2X)GTW3 %

U. ALFN (BRLESC only, ignored by ORDVAC)

This pseudo order type allows alphanumeric constants to be
gtored. Columns 11-20 will be stored as ten six-bit characters in one
BRLESC word or two ORDVAC words just as it is punched on the card. Each

succeeding ten column field is stored in censecutive words 1f it is not all

[
[4;]

blank. If any ten column field is all blank, (beginning at column 21) it

<

not stored and the rest of the card is ignored. The last ten columns (71-80)

are never used on ALFN cards. CONT cannot be used to continue a string

73

of alphabetic constants, each card must have an ALFN order type. DNote
that at least one (two on ORDVAC) alphanumeric word is always stored
from each ALFN card, even if it is all blanks. Also note that some

multiple of two words is always stored on ORDVAC.
Example: ATFN ERRCR PRINT X = O

V. O0.T. (BRIESC only

v 7

This allows arbitrary symbolic order types and their sexa-
decimal equivalents to be defined. Columns 11 - 76 may be used to
define any number of order types. Each definitlion should be of the
form: (symbolic order type = sexadecimal equivalent) and each defini-
tion should be enclosed in parentheses. After a %, the rest of the

special characters and the sexadecimasl equivalent may be written either
with or without a leading zero. The primary purpose of having this

ido order type is to allow the arbitrary definition of the inter-

- vy oy

pretive orders on ERLESC, however it may be used to define any

new order
types or to define new names for old order types. (See page 136 for a
1ist of BRLESC order types.) Note that an O.T. definition defines all
eight bits of the order type. A maximum of twenty new order types may

be defined in any one program.

Examples: 0.T. (TI=LK)(AD=L2)%
P

A
“

Yo 2 ¥ Yal o

. List of Standard FORAST Subroutines.

The FORAST compilers include about fifty standard sub-
routines that are available for use in any FORAST program. If the
standard name of any of these subroutines 1is used anywhere in a pro-
gram, the compiler automatically provides for storing that subroutine
as a part of the running program. These subroutines are stored immedi-

ately before the decimal input-output routine and use as much space as

the end of the dictiomary lists the address &
begin.) A name of a subroutine should not be used as the name of a
variable although this would work if the subroutine is not used i
program. The name of a subroutine actuslly represents the entry word
which is usually the first word, however some subroutines have more
than one entry and hence may have more than one name. Some subroutines
also use other subroutines and the compller always stores all the
quired subroutines but never stores the same one twice., The dictionary

only shows the subroutine names that were explicitly used in a program.

All of the standard subroutines that do arithmetic do float-
ing point arithmetic and hence must only be used when arguments are float-
ing point numbers. New subroutines with new names would have to be added
to do any other type of arithmetic.

The following floating subroutines have one argument and one
result and may be used either in arithmetic expressions or in an ENTER
statement:

SQRT EXP TAN SINH
SIN ARCTAN coT COSH
cos ARCCOT SEC TANH
LOG ARCSIN Ccsc WHOLE
LOG1O ARCCOS SIGN FRACT

ABS may also be used for absolute value but cannot be used
in an ENTER statement. It may be used with any type of number but
remember that BRLESC index registers will always be considered to be
positive by an ABS command.

(@

The angle arguments and results for the above subroutines
are in radians. The result of ARCTAN and ARCSIN will be in quadrants
I or IV and the result of ARCCOT or ARCCOS will be in quadrants I or
II. Note that LOG is used for the natural logarithm and EXP is the e’
function., The SIGN function produces a result of -l(fl.pt.) when the
argument is negative, & zero when the argument is zero, and +1(fl.pt.)
when the argument is positive. SINH, COSH and TANH are hyperbolic
functions. The WHOLE and FRACT subroutines produce the whole part or
the fractional part of a floating point number as another floating point
number without any rounding of the argument. The argument and result
addresses are indexable on all of the above subroutines and the argument

may be an arithmetic expression only when the subroutine is used in an

The rest of the subroutines listed here are normally entered
with an ENTER statement. All of the addresses are indexable except where
noted otherwise. A small letter means that the subroutine uses the
effective address itself (not its contents) as an integer number. Under-
lining indicates those argument addresses that are optional and may be
omitted. The addresses used here only illustrate the number and type of
addresses required for each subroutine. In a program, they may be re-

placed with any other names or addresses.

SINCOS)X)SINX):OSX)£¢ Assumes X in radians when p = o or is omitted.
Assumes X in degrees when p = 1.
Assumes X in mils when p = 2.
Assumes X in circles when p = 3. (l circle =
360 degrees.)

POWER)A)X)APX)% Raises A to the X power where X may be
either fl. pt. or integer number and

A > 0 unless X is a whole number.

ARCSC)SINX)COSX)X)% Computes X in radians from a known sin

and cos. (- < X< x)

ARTAN)Y)X)ANGLE % Computes arctan (Y/X) in radians.
(-x < ANGIE <)

—J
o

IRTEGE)FN)IN)%
FLOAT)IN)FN)%
READ BL %

BCMPO)A)B)%

Separates a number X into its whole part
and its fractional part.

Converts a fl. pt. number to fixed point
fraction.

Converts & fixed pt. fraction to a fl. pt.
number.

M o
Converts a fl. pt. number to an integer

after rounding by 10 .

Converts an integer to a fl. pt. number.
Same as CVFTCL

Same as CVITOF

Read a "blank" card.

Sexadecimal print from A to B.

ORDVAC: A and B are not indexable. A
card with A and B on 1t is printed and
then the contents from A to B are
printed with eight words per card.
Every word from A to B (inclusive) is
printed.

BRLESC:

word on each card at the beginning of

Prints the address of the first
the card. Prints four words per card
but does not print cards that would

have all four words of zeros.

Binary card memory print out. Prints
the contents of the memory from A to B
on the binary cards with key words for
re-reading by the standard program input

routines.

7

e 8

RDVAC: A and B are not indexable.
Words of all O or all 1 bits are
skipped except for the first word in
a string of such words.>
BRLESC: Words of all O bits are skip-
ped except when there is only one
zero word between non-zero words.
Alphabetic card read and print routines.
A is initial store address and n is no.
of cards. EFach card uses el
c21ls on BRLESC and sixteen cells on
ORDVAC. BRLESC allows a third optionsal
address "c¢" that is the number of
columns per line for variable le:
line tape input or output. Each 1)
starts at a new word and requires liil

words.

The following subroutines may be used (in an ENTER statement)

SETMSI

QETMSO
Al dd kb AS

SETPSI
SETPSO

Sets the "card
[N £ AA-CL\lA
DL O LUL uvuuvlilc

input-output routine.
counter" to zero.
punched input signs.
punched output signs.
punched input signs.

punched ocutput signs.

Set minus sign for input. All are followed by one
Set minus sign for output. non-indexable addresses
Set plus sign for input. that is 0,1,2 or 3.

Set plus sign for output. 0 means blank

1 means y(12) punch
2 means x(11) punch

3 means x or y punch

o anything; all input numbers that are not

MAX.)A)B)........-.)Q)R%

MOD.)A)B)C%

MAX. finds the largest number of (4,B,....,Q)
and stores it in R where A, B,...,Q are
floating point numbers. Note that the
number of addresses is variable (there must
be three or more) and R is used here to

denote the last address.

MIN. finds the smallest number of

(A,B,....,Q) and stores it in R where

7 N7

A,B,....,Q are floating point numbers.

MAX,I finds the largest integer number

MOD. computes C = A(mod B) where A,B and C

are Tloating point numbers. It is the same

S.N.E

MAT,INV.

~ Ay

as the FORAST formula C = A - WHOLE(A/B)*B.

The following matrix manipulation routines are available:

MA s+ +
i t the use of

Co and use DET it is

necessary to write

Al,1: Bl,1l: Cl;1 are addresses

of the first elements of matrices.

Co 1is the address of the first
element of the solution.
DET is the address of the determinant.

Cl 1is the address of the first
coefficient of the given equation.
i is the number of rows in A(or A

- T,
A{or A”) and 1s equal to the
no. of rows in B(or BT).

the number of columns in

or BT).

e
~~ 0

-
%)

MAT.MP

JAl,1)B1,1)C1,1)1)

J)k)z)ra)ca)

rb)cb)re)cc

%

~N

ra

ca

NOTE: The augmented column is
not counted.
is 3 sexadecimal characters
(preceded by a zero) that
defines the options to be used
in the matrix multiply (MAT.MP)
subroutine. The sexadecimals
correspond to the three matrices
A,;B,C respectively: 1 is trans-
pose, 2 is augment, 4 is accumulate
(Use 4 for C only; options may be

combined; augment options ignored

H

if r and c are specified.)

is the spacing between first
elements of successive rows of
matrix A.

is the spacing between the first
elements of successive columns

of matrix A.

rb,cb, and rc,cc have the same mean-

80

ing as ra and ca except they

apply to matrices B and C

respectively.

NOTE: These r and c optional
addresses cannot be omitted
except omission by pairs
from the end of the ENTER
statement.

NOTE: When the transpose of a
matrix is used, the
dimensions of the transpose

must be specified.

Additional comments on the above matrix subroutines: The
S.N.E. (Solve normal equations) assumes all elements of a matrix having
n rows and n + 1 columns are stored in the memory by row The SY.SNE
(symmetric solve normal equations) assumes that only the upper triangle
of ann x n + 1 matrix is stored and SY.INV (symmetric inversion)

ACoITRan

assumes that only the upper triangle of an n x

fol)

matrix is store

w3

S.N.E.; MAT.INV; SY.SNE; and SY.INV all replace the original matrix

with its inverse. On ORDVAC only, the S.N.E. replaces the extra vector
column with the soluticn vector besides storing it at Co if a Co is
specified. The SY.SNE stores the solution vector only at Co. The F.N.E.
(form normal equations) assumes that the upper triangular augmented
matrix has been cleared by the program before it is entered with the
first equation. The F.N.E. produces a matrix that can be solved with the
SY.SNE. The F.O. MAT (fill out matrix) will take an augmented upper

triangular matrix (as generated by F.N.E.) and replace it with an

For BRLESC only, the S N.E. will attempt to rearrange rows of
the matrix when it finds a zerc diagonal element while it is computidg
the inverse. The row rearrangement does not affect the arrangement of the
solution vector, however the inverse matrix will not be correct if any
rows were actually rearranged. Rearrangement can be avoided by use of
the “not” option as explained below.

Additional BRLESC S.N.E. options:

S.N.E.)A1,1)n)Co)DET)drow)dcol)Bl)db)dc)ZERO)not)%
If "drow" is specified, it is the spacing between rows; i.e

(which is the same as spacing between elements within a row).

If Bl is specified, the n positions beginning at Bl are used

as the column vector instead of the (n+l) column of the matrix.

MR}

If "db" is specified, it is the spacing between the elements of
the column vector.

81

To N M s ot 2 . q .
If "de" is specified, it is the spacing between elements of

the solution vector.

If ZERO is specified, it is the address of t
will be used to check for zero diagonal elements. Those diagonal elements
whose absolute value are less than ZERO will be considered as zero for the

rearrangement test.

If "not" is any address different from zero, the S.N.E. will
not rearrange any rows.
When any or all of these spacing options are omitted (or zero),

the normal consecutive spacing of elements is assumed.

For MAT.INV on BLRLESC, "drow", "decol", ZERO, and "not" may be
specified when needed and have the same meaning as for the S.N.E. except
"not" has the opposite meaning. MAT.INV does not normally rearrange

any rows and will do so only when "not" is specified as non-zero.

Note that when optional addresses are omitted any place except
at the end of an ENTER statement, the right parenthesis must still be
written for each omitted address. 1In particular, the above options for
the MAT.INV subroutine must correspond to the same position on the list
of addresses as used by the S.N.E. since they are just different

entrance points to the same subroutine.

R.K.G.)At)n)Do)Yo)Ko)Go)% Ot is the address of the siep size.
(Runga-Kutta-Gill solution n is the number of equations.
of ordinary differential Do is the location of the first
equations.) word of the derivative sequence.
R.K.GD is the return from the (must be a left order on ORDVAC)

derivative sequence.
Use GOTO(R.K.GD)% Yo is the address of the first

(independent) variable.

R.K.Gl is the re-entry for Ko is the address of the
steps after initial entry. corresponding derivative.
Use GOTO(R.K.G1)% Qo is the address of the

corresponding error term.

82

nrrrrea VA _\vr

RKGMA)At)n)Do)Yo)Ko

Use GOTO(RKGMAD)% at end
of the derivative seguence
Use GOTO(RKGMA1)$ for
re-entry at steps

after the initial entry

S.INTE)Fo)T)FT)I)TL)TU)E % Fo
(Simpson's Integration)

S.I.FF is the return from the T
function routine. Use
GOTO(S.I.FF)% FT
(Note: The function routine
must not be put immediately I
after the ENTER statement.) TL

TU
E
D.IN)X)FX)Xo)Fo)tpt)n)ix) X
1f)% FX
(Divided Difference Inter- Xo
polation)
Must use all three Fo
optional arguments or
none. If omitted, tpt
(5)1)1) is used.
83

\vr d
* KN

)
(BRLESC only)

'_1 =

2 - = L -~ e AR P = 7 - |
is a block of 3n memory cells need-

ed for temporary storage within

the subroutine. Integration by

nnnnn J-Ln,:l w3l
nucuub MC LUl will

automatically be started after

four steps of Rung-Kutta-Gill
integratinn Fonal gten girveg
Ldd U\ablu VALl e u\iw.t. e o LW

are required. RKGMA must be

re-entered for each change of

step size.

If KN is omitted,
will be by Runge-Kutta-Gill method.

of the function routine.

(must be left order on ORDVAC,

t+he addreccs
Qaress

(V2 8 Ly =

w

of t
CI

e

variable.

is the address

lower limit.

upper limit.

4]

3
4

the
the result.

argument.
of
address of the
table of Xi's.
is the initial address of the
table of Fi's.

is the number of entries in

the table. (no. of Xi's)

entire integration

D.D.SX)Fo)FX)% n is the number of points to use

Use this to interpolate in the interpolation.

more functions using the ix 1is the distance between entries
same value of X. (must in the X table.

use ENTER). if is the distance between entries

in the F table.

NRNOS1)Ao)n)Bo)% Ao is initial address of n o's
(Normal Random no. (standard deviaticns),
generator)

NRNOS2)Ao)n)Bo)% n is the number of random

numbers desired.
Bo is initial address of resulting
random numbers.
(Use NRNOS1 for first entry in a program and NRNOSZ2 for all sub-

sequent entries.)

NRNOS.)Ac)n)Bo % (NRNOS. is faster than NRNOSL on
‘BRLESC.)
ENTER(SETNRN)% may be used to reset NRNOS. to its initial sequence

of random numbers.

G.

=
8

or

P.L.SQ)X)ix)F)if)n)AL,1)n)C)R)ir)AT) al)ERMS)SIG)T)DET)w) iw) EQSEQ)TSEQ %

(General or polynomial least squares data fitting.)

X For G.L.3Q, X is the location of the first term of the first
equation. Terms must be stored consecutively.
For P,L.3Q; X is the first independent variable.

ix For G.L.SQ, ix is the distance from one equation tc the next
one. For P.L.SQ, ix is the distance from one independent

variable X to the nex. one.

P is the function value for the first equation or polynocmial.
if is the distance between function values.
m is the actual total number of equations of "points" that are

to be used in computing the fit. (It must not include those

skipped by using BQSEQ.)
84

equation. (It must not include those skipped by using TSEQ.)

P.L 89, n is one less than the number of terms and is the
degree of the polynomial when all the terms are used.

c is the initial address for consecutively storing the n coefficients.
(If n 2 38, n + 1 spaces must be allowed at C.)

R is the initial address for storing the m residuals.

ir is the distance desired between residuals, i.e. the increment for
the R address.

AR is the initial address for storing the m approximate function values.

iaf 1s the increment for the AF address.

ERMS is the store address for the root-mean-square error. Zero is stored
when m < n or when X Wi < n.

SIG is the initial address for consecutively storing the n "sigmas”.

SIG, = ERMS * SQRT(inv.el.A_)
i i,i
(If the inverse element Ai i is negative, it is stored for SIGi and
J
Ti = 0.)
T is the initial address for consecutively storing the n "t's".
T, = C,/sIG,
i i i

DET 1is the address to store the determinant.

W is the initial address of the weights ft¢ be used.

iw is the increment for the W address.

EQSEQ is the initial address of a consecutive sequence of numbers that
bave a one to one correspondence with each equation (or point)
stored at X. A zero number indicates that the corresponding
equation (or point) is to be used and a non-zero number indicates

that it should not be used. Note that this sequence, if used,

miic+
WIS U

85

TSEQ is the initial address of a consecutive sequence of numbers that have
a one to one correspondence with the terms in each general equation
or with the powers of X in a polynomial. A zero number indicates

that the corresponding term or power of X should be used and
zero number indicates that it should not be used. lNote that
sequence, 1T used, must contain n zero numbers.

For BRLESC only:

COWELL)Do)At)p)n)m)Yo)Ko)Qo)Vo)%

(Cowell's solution of 2nd order differential equations.)

where: Do; At; Yo; Ko; and Qo are the same as for R.K. G.

except COWELL assumes the independent variable is in Yo and fi is in Yi

and fi' is in Y, .
itn
p; n; and m are non-indexable.

p 1is the highest order difference to be used.

(@]

n 1is the number of functicns to be differenced.

m indicates that 27 steps of R.K.G. should be used for obtaining
each of the p + 1 steps necessary for starting Cowell.

V_ is the initial address of a block of n(p+3) cells that the

subroutine uses to store the difference tables.

The derivative sequence should end with a GOTO(COW.DX)%
statement.

A "COWXTR" (Cowell extrapclation) subroutine is also available
for use in satellite orbit calculations. See the separate description
of this routine for details.
BESSEL)X)Jo % where X is the argument and Jo is the initial
(BRLESC only) address of six consecutive words for storing
the three Bessel functions of the first kind of
orders (,l,and 2 followed by the three Bessel

functions of the second kind of orders 0O,l,and 2.

The following group of BRLESC subroutines simplify computations

involving the real time clock.

CV.CLK)CR)FCR % Converts the clock reading in CR to a floating

point number and stores it in FCR. This number
is the number of minutes since the previous
midnight and is precise to hundredths of

minutes. If the CR address is omitted (or

S.CILKS)CR1)CR2) This subtracts two alphanumeric clock readings

DIF %

(CR2 - CRl) and stores the difference in minutes
(modulo 24 hours) in DIF as a floating point
number. If CR1l is omitted (or zero), the

"start time" of the problem is used. If CR2

is omitted (or zero), the current time is used.

’

CK. CLK)MAXT) DONEh If the total time in the problem has run up to

this statement is greater or equal to MAXT
(a floating point number) minutes, then the
statement at DONE is done next. If DONE is
omitted, N.PROB is used as that address.

(Compile time is included in total time.)

The following group of subroutines allow easy use of magnetic

tape input and output on BRLESC:

ENTER(SET.TI)u)E.T.)B)BMAX)v %

u
E.TO

is tape unit number. (1 < u <5 or 9 <u < 14)

is optional; if is zero (or blank) then the routine
goes to N.PROB when the END TAPE sentinel is read.

If specified (not zerc), then the routine jumps to that
address when the END TAPE sentinel is read.

is the initial address of a block of storage that is
large enough to hold the largest block on the tape
being rea

is the last address in ﬁhe storage block for this tape.

3
Q.

87

if v = 0, (or omitted) then computer does automatic
selection between 80 character lines and variable length
lines.

if v

[N

1, then tape is read only as 80 character lines.
if v = 2, then tape is read only as variable length lines.
SET.TI allows a program to read data on magnetic tape. It
sets the computer so that subsequent READ statements (or A.READ or READBL

subroutines) will cause data to be read from the tape unit specified.

}

The tape may be one that was made cof '-iine from cards or it may be

a
(=3

previous output tape. As many as six input tapes may be used in one
program by entering this subroutine at different times with different
tape unit numbers. If the unit number has been used previcusly in the
program, the data will continue with the "line" that follows the last
"line" that was read from that tape. Each unit should have its own

storage block if the program ever re-uses that unit because a part o

Fb

a_
block may need to stay there while another unit is being used. When

entering with a unit that was previously used, it is not necessary to

specify the storage block addresses; 1f specified, they will be ignored.
Tt is not possible to change the storage block once it has been already
assigned. The storage block may be longer than any block on the tape

t not be shorter than the longest block that is read from the
tape. (Each storage word can hold ten characters.) The tape block
length can be variable and if any block is longer than the storage
allocated, the rest of the block will be ignored. All tape reading is
parity checked and re-rcad five times before causing the erroneous "card

to be punched and a RUN ERROR card saying "PAR.ERRORu".

The "E.T." (end tape) address should be zero unless it is
actually needed. If it is zero, this tape unit is rewound, the computer
is set to read cards and control goes to N.PROB. If an address is
specified, then these things should be done by the program before going

to N. PROB.

(00)
[oe}

It is desirable that a standard end of tape sentinel be used
by everyone. It is also best to have a standard end of reel sentinel.
This routine uses "ENDbTAPEbb" (b is blank) as the end of tape sentinel

when it appears as the first ten characters at the beginning of a block

and the next ten characters do not say "ENDbREELbb'". When the next ten
characters do say "ENDbREELbb", then it assumes that there is another
reel to be read on this same unit, so it rewinds the tape and halts at
081 so that the operator can mount the new reel. (The unit no. is in the
B address of the halt order.) Standard BRLESC tape 8 output will have

the END TAPE sentinel if the "rewind tape 8" switch was properly used.
When making tapes off-line, an extra block of one card with this sentinel

should be added at the end of all the data.

produced in front of previous FORAST or FORTRAN output are automatically
skipped. (It checks for "bbBRLESCbb" in characters 11-20.) A dictionary

or any other compiler output will also be automatically skipped.

When variable line tape is read, the vertical control character
ored, The "A" end-of-line character

Y

must appear to mark the end of

the line but it is never stored as part of
the data. Any line may be read as 160 characters long with blanks being

used to expand the actual length to 160.

A word within this routine is named SKP.TL and it may be used
to "skip tape lines". If it is set to an integer (not fl.pt.), then the

next tape read will skip that many lines’. (If the skip includes the
"header cards", then they must be included in the integer that is put

into SKP.TL).

It is permissible to set for tape unit u when the same unit
u is being used at the time SET.TI is entered.
ENTER(SET. CI)%

The input data may altermate between tape and cards at will.
The use of SET.CI will set the computer for reading cards. (SET.CI is

a small subroutine within the SET.TI

—n L

subroutine. If tape No. 6 is being

8

\O

used
compiler is set for
does nothing.)
ENTER(SNB. TI)%

This subroutine

~7

A

Y=Y
usco

when it ne

4
9

does nothing if computer is

s B T SRR e
write their outpu

output tape units, switching between tape and cards (which ma

at the operator's descretion),

4+

characters for variable length

The parameters a

u

td

(V="

.
n 1

he
nen 1

t sets for

input at the time is entered, it

cause SET.TI to start a new tape block

i +arn

UGk b

nmn
Ilpu

ct
h

s currently set for e input. (SNB.TI

Loy]

set for card or tape 6 input.)

]

B«

and also allows the line lengt

) output will have the ne

ne
3 A

line printing.

res
Tape unit number.

Tape 8 (o

Must use O to 13 but not

— N\
r O)

7~

[6) e |

or T. shoul
is no card output intermixed with the tape

output and if it is not necessary to have the

output on a reel by itself. {(If u = 0, tape
8 is used. Tape 8 is the standard unit used

when getting "card" output on tape.)

Initial address of a "buffer" block for

o

Final address of the "buffer" bloeck for unit

BMA

AR A

-
-

The

R 8 =

must be at least B + 7 (8 wds).

€

length of the block used is made mod 8 and not
more than 200 words are actually used because

of the 8K memory limitation of the 1L4Ol.

90

ct

1 (1 < 11n
WUe \-I- - dadld

A

line Maximum line length for uni e
160 or 132 if ever want to print on 1401.)
For initial entrance for each unit, zero is

used as 80; afterwards, zero means 'no change

When switching is done between one or more tape units, each
one must have its own buffer block and line length. Once a buffer block
is specified for a unit, that same block is always used and it cannot be
changed and it need not even be specified after the initial entrance.

The line length is remembered for each unit and is reset when switching
back to that unit. However it may be changed at anytime. (When changing
the line length, the buffer addresses or at least the parentheses, must

be written in the ENTER statement.)

The concept of one line completely replaces the concept of one
80 column card when the line length is changed. This means that the end
of the format means start a new line, a format type 14 means start a new
line, the end of a subgroup means start a new line, and it means that the
card counter, when used, will print at the end of the line whenever the
printing stops before the card counter field is reached. These concepts,
except for card counter printing, are also true when reading variable

length lines.

It is permissible to switch to the same unit that is currently

being used. A maximum of six tape units (besides tape 8 "card" output)

t
the standard buffer (at ONF60-ONI2T)

is parity checked and concurrency is gained

by "double-buffering”. ONL30-ONLL7 is used as the extra 200 word buffer.
Tape trunk B is used to do all of the writing.

91

The end of a reel is checked for and when reached, the "END
REEL" sentinel is written, the tape rewound and the computer halts at
080 with the unit no. in the B address of the halt order. Mounting a

mmee e { ~ ATra i W A auite EROE 3 3
iew tape (or changing the proper tape switch) and initiating is all that

This SET.CO subroutine (actually part of SET.TO) allows switch-
ing from tape output to card output (or tape 8 if switch 35 is up). It

resets the line length to 80. It doces nothing if the computer is already

0

et for "card" output.

ENTER(EBR.TO)u)r %

This subroutine (actually part of SET.TO) will empty the buffer
block used for unit u by writing a partia’ block on the tape. If r is
omitted or zero and u is not 8, it will also write a file mark, write
an 8 word END TAPE block, another file mark and rewind the tape. If
r is not zero or if u is 8 and tape 8 is being used for "card" output

it will only write the partial block.

EBR.TO may be used with the current unit, any previously used
unit or if the unit has never been used, it does nothing. It alsoc does
nothing if the tape has just been rewound by this subroutine. It may
be used with u = 8(or 0) to empty the "switch 35" tape buffer and it
will do so only when switch 35 is up. It will not rewind tape 8 when

switch 35 is up regardless of the r used.

Normally, the programmer does not need to use EBR.TO as the
N.PROB routine will empty the buffers and rewind all of the units that
have been used by SET.TO. (It does this by actually using the EBR.TO sub-
routine.) If C.PROB is actually used instead of N.PROB, the buffers
are emptied but the tapes are not rewound. Any N.PROB (or C.PROB)
error prints will appear on the tape (or "cards") that was being used
at the time N.PROB (or C.PROB) was entered. If the card deck version
of N.PROB is used by the BRLESC operator, the error prints will be on
cards and the tape buffers will not be emptied and the tapes will not

be rewound.

Once EBR.TO has been used, the buffer block may be used for
other storage. However, if more output on that unit is desired, the first
word must be set to contain the sexadecimal constant (ZIN1). (This is an

ignore character and a 1 character.)

Variable Length Line Control Characters:

utine and tape 8 "card" output both wri

variable line control characters as described for the off-line printer

system. Thus each line has a vertical control character at its beginning

that ¢ the amount the paper is shifted and a nAn end-of-11i

(O -S =3 8 L0 = _ (g L0 LV .

(D

n
Aa

ghtmost

E1
Al

&
jm
m
<3
0]
o]
ct
I..Jo
[¢]
o
}._J
O
O
3
ct
Lo}
(o]
]
%
H
€0
[¢]
ct
D
L]
H.
wn
o]
(o]
ct

Lo]
s
}-Jo
[=]
t
[{]
fol]
L]
s

four bits selects a paper tape channel and the printer carriage moves the
paper until it finds a hole in the paper tape in the selected channel.

i
It is extremely desirable that everyone uses the sa

tape which defines the control characters in the following manner:

1 Single space and start a new page after 60 lines.
Skip to next even numbered paper line and start

a new page after line 62 has been printed.
y

L <

(Is double spacing if used all the ti

me.)

3 Single space continuous.

N Skip to next 1/5 page. (12 lines per group.)
5 Skip to next 1/4 page. (15 lines per group.)
6 Skip to next 1/3 page. (20 lines per group.)
7 Skip to next 1/2 page. (30 lines per group.)
8 Start new page at line 3.

d

e om v v
v n

{ \
LINLEO Qbide V11)

o
o

SET.VC is a subroutine that allows the programmer to specify
the vertical control character for the next line and also the succeeding

lines. The n address itself is the confrol character for the next line

93

and the § address is the control character for all succeeding lines
’ el = y \ A = \ - . N
(until SET.VC is used again.) If either (or both) address in blank
(or zero), it is ignored and the previous character remains in effect.

The n character is used for the next tape output line regardless of

To use the selective printing option available on the Analex

[el e +1 2]l A A 3 ~reved < < 1
system, the decimal or sexadecimal equivalent of the desired six bit

code may be written for both n and s.

Example: ENTER(SET.VC)8)2% means start a new page with the next line

and double space the succeeding lines.

BRLESC Compiler Tape Output:

All compiler output (error prints, header cards, dictionary and
sexadecimal code) may be put on tape 8 either by the computer operator
putting switch 35 up or by & .TO % statement appearing in the program
being compiled. (Note the absence of ENTER in front of SET.TO!) All
compiler output may be put on another tape unit u by writing the statement
SET.TO(u)% in the program being compiled. Note that SET.TO%H and SET.TO(u)%
statement (without ENTER) set the computer for tape output at the time
they are being recognized by the compiler and not when encountered in the
running program. They both also cause the running program "card" output
to be put on the same tape unit. However SET.TO(u)% may actually be

changed to card output by using ENTER(SET.CO)% in the program if u # 8.

All compiler tape output is written as variable length lines
with a new page begun at the first line of output and at the header cards
.P

ront of the problem output,

BRLESC Tape Plotting Subroutine:

BRLESC has a subroutine, with eight entrance names, that can
be used to produce magnetic tape for off-line plotting of data., The
names of the subroutine entrances and the lists of addresses used with
them are listed below without explanation. See BRL Technical Note No.
1551 for a detailed description of this subroutine.

4

\O

PIOT. S)h)x)7)X3)Y3)XS)YS)Ah)u %
PLOT.D)h)f)a)an)X)¥)n)ix)iy)c)XMIN) XMAX) YMIN) IMAX %
PLOT. A)h)AX)AY)XMIN) XMAX JYMIN)YMAX)an %

PLOT.T)h)HT)SY)p)an)X)Y %
PLOT.F)h %

ENDPLO)b)h %
FD(.SC)Dl)n)i“).SJJ\I)DS)DvIIN)DILAX)DELD %

CON. SC)Dl)n)lD, .5IN)DS)IMIN) IMAX)DEID %

Additional information on most of the above subroutines may

be obtained from their individual descriptions that are available.

XI. Error Prints
Both FORAST translators do a limited amount of checking for
programming or key punching errors. They check for only very simple
types of errors and this is only a very small percentage of all possible
errors. The programmer must not assume that his program is correct

Jjust because it does not cause an error print. If the translator does

find an error, it prints out scome information about the type and location
of the error. The ORDVAC prints two words on the teletypewriter and

BRIESC prints two alphanumeric cards. When a program contains an error
., the translators will always print the

dictionary and will not allow the program to be run.

When the translators find an error, the rest of the card that
contains the error is not translated. If the error is found at the en
of a card; the translators will usually skip the entire next card. There-
fore it is possible that the translators will not find all of the errors

in Jjust one run.

The dictionary should be used to help locate errors. It
should be checked for strange names that will usually be marked with a
U and for the desired storage assignment. The dictionary does not need
to be checked or printed each time a problem is translated, but it should

be checked at least once for a given problem.

A. ORDVAC Error Prints:
The ORDVAC prints two words on the teletypewriter that have
the following form:

Type 0 Om O Ident. Card No.

where Type is the two digit number listed below; m is the sexadecimal
digit (0 to L) that indicates the five digit field on the card in which
the error was found; and Ident. is the decimal part of columns T77-80
that were on the card that contains the error. (The error might be at
the end of the previous card if m is zero.) The second word printed is
the actual sexadecimal count of the number of cards that have been
processed. It is independent of the identification in columns 77-80 and
is strictly a count of the number of cards that have been "read" at the
time of the error print. It starts at one and if a five is printed and

m # O, the error is probably on the fifth card in the program.

Below is a list of the ORDVAC type numbers with a brief

description of the probable cause for the error print.

TYPE PROBABLE CAUSE
0l Illegal order type in assembly language.
02 Illegal character.
03 More than one comma in a non-array address.
ol Illegal character in a decimal number.
06 Illegal character in a sexadecimal word or address.
o7 Tllegal exponentiation.
08 IF statement has ABS in front of an equality conditional
expression.
10 Symbol after ")IS" is neither + nor - in an IF statement.
11 Tllegal name preceding a co:aditional expression in an Ir
statement.
12 Improper name at the beginning of a formula or statement.
13 IN does not appear in a COUNT statement.
14 No % at end of COUNT, MOVE and CLEAR.
15 No % at end of a MACH assembly order.

3

+
-
"
bt

5> R &

ON N
®

h o PEQY- Py 2 -~ ~r e
Referenced a block before it was defined.

Format address is indexed in a READ, PRINT or PUNCH statement.
Increment for address advance or count in a COUNT, CLEAR, MOVE,

RWAD or PRTNT s+n+nment

r PRINT statem has an indexed symbolic primary address.
Fixed fractional number exceeds one.
The address on FI'TS or NOS. card is not a machine address.

The GOTO address on the END card is not assigned.

An address has a symbolic increment.
Name of the subroutine is indexed in an ENTER statement.

Address on LAST card becomes assigned before the END card.

(¢

PUS SR — LILUC

Illegal arithmeti n

n left of = chara
1

o e
for no. of blanks before > in a PRINT

Symbolic name use

o7
o

statement.
No > on the same card after a < in a PRINT statement.

Dictionary is rull. (About 380 names.)

The SYN backlog table is full. (28 names.)

The drum is full. (Program is too long. About 3000 words.)
The SYN table is full of unassigned addresses. (64 names.)
Exceeds drum capacity while reading cards.

No END card.

B. BRLESC Error Prints.

—

BRLESC prints two alphanumeric cards. The first one

is of the following form:

FRROR Type Error word m Ident. [Rest of Pm cols. 11-20 Prob. card

where Type is the two character number listed below; Error word is a ten

character word that attempts to describe the type of error; m is a diglt

(0 - 7) that indicates the ten character field in

in which the error was

found; Ident. is columns 77 - 80 of the card that contains the error (or

971

of the next card); "Rest of Pm" is the characters that have not been used

from the mth field on the card (the error was found at the leading character

printed here); Columns 11-20 from the card

re printed; and "Prob. card" is

jsv)

the first 30 columns from the PROB card that was at the beginning of the

program.

the error or when m = O,

the error.

The second card printed is the acutal card that contains

it is probably the card following the one that had

Below is & list of the BRLESC type numbers and error

words with a brief description of the probable cause for the error print.

TYPE ERROR WORD
01 ILL. O.T.
02 ILL. CHAR
0% 2 COMMAS
ok DEC NO NO.
06 NOT SEXA.
o7 ILL, **

08 ABS IN IF =
10 NOT IS+OR-

11 ILL PAR IF

13 COUNT NOIN

1k COUNT NO %

14 CL MV NO %

15 NO % AS.

16 SYMB. RESN

PROBABLE CAUSE

Illegal order type or statement.

Two commas in a non-array address.

A decimal number has 1llegal character.

A non-sexadecimal character in a sexadecimal word
or address.

Illegal exponentiation.

IF statement has ABS in front of an ecuality con-

Symbol after ")IS" in IF statement is neither

+ or -,

Illegal "parameter" in front of conditional
expression in IF statement.

A COUNT Statement has a variable increment without
using IN,

No % at end of COUNT statement.

No % at end of CLEAR or MOVE statement.

No % at end of an Assembly order.

Attempted to reassign a symbolic address.

93

ERROR WORD PROBABLE CAUSE

BLOC REF. Referenced a block before it was defined.

X NO. OVER A fixed pt. fraction exceeds sixteen.

NO MAC ADD No machine address on FITS or NOS. card.

END SYMB. The GOTO address on the END card is not assigned.

SYM. INC An address has a symbolic increment.

LAST SYMB. An address on a LAST card becomes assigned before
the END card.

ILL. LOC. Improper location field.

FORM, BIG Formula is too big; has more than 31 operations
grouped from the right.

ILL. OP. ¢ Illegal operation where ¢ is the illegal symbol.

INT. SQRT Integer square root is not allowed.

NO GOTO IF An TF statement without a GOTO address.

1L, < OR > Illegal inequality symbol. (not in an IF statement.)

WITHIN NO= WITHIN used following an inequality conditional
expression.

NO % SI GO A GOTO in a SET or INC statement i1s not at the
end of the statement.

NO % SI II A SI,II,SIJ, etc. assembly order has more than
three addresses.

INDX SY IC A symbolic increment for COUNT, CLEAR, etc. is
also indexed.

HALT NO % Have more than three addresses in a HALT order.

GOTO IF % A GOTO statement is not followed by IF or %

ILL. O.T. The order type name on an O.T. card is not
symbolic.

ILL, C IO Illegal C address on input-output order

TYPE ERROR WORD PROBABLE CAUSE

45 ILL.= Illegal arithmetic on left of = character in
arithmetic formuwla.

48 ILL.SHIFT Illegal shift code character or an illegal fl. pt.
shift.

49 2R. WITHIN More than one relation preceded WITHIN in IF state-
ment.

50 INDEX > 63 Used more than 54 index registers.

51 LOC = O00 Location counter is set to 000.

BL.OC = 000 A block is assigned to 000.

55 NO PROB C. No PROBlem card.

60 PRINT SYM > Symbolic name for number of blanks before > in a
PRINT statement.

61 PRINT NO > No > on the same card after a < in a PRINT statement .

62 LOC. > _ Add._ Program is stored at too large an address. "Add."
is largest allowable program address and changes
with memory size. For 52K, it is 9LLL.

63 TAPE 7 NG Repeated failures on temporary tape unit 7.

Fl DICT. FULL The dictionary is full. (about 7000 names)

F2 BACKLOG The SYN backlog table is full. (64 names)

Fh SYN. TABLE The SYN table is full. (288 names)

F5 NOS. FULL The constant pool is full. (352 constants)

ERROR TAPE 7 Machine error on temporary tape. (Columns 69-80
has alphabetic error bits or a name that came from
tape but is not in the dictionary.

ME MACH. ERROR Machine error.
XII. Run Error Prints:

Many of the FORAST subroutines include checks for error
time. If a subroutine finds an error condition, it
causes an error print. After the print, the computer halts uniless
"ERROR" was used as a location in the symbolic program. If ERROR was

then the program continues running at the ERROR location. (See

e b4 St i Sl)

100

A. ORDVAC:

The ORDVAC run error print routine prints two sexa-

decimal words on the teletypewriter. The first seven sexadecimal digits

of the first word serve as a code number to identify the subroutine and

the last three digits of the first word are the return address for the

entry that caused the error condition. The second word is

the argument or some other word that indicates the type of
ORDVAC Run Error IList:

(X and Y represent arguments and RA is return

generally
trouble.

address)

OR_WORD SUEROUTINE REASON SECOND WORD
K6012 NO _ RA_ SQRT X<o0 X
06014 NO _ RA_ LOG or LOG1O X<0 X
K6013 NO _ RA_ EXP X > 87.3365444% X
26010 NO _ RA_ ARCSIN or ARCCOS [X|>1 + 2= X

or ARCSC
K6010 NO _ RA_ SIN Ix|/2x > 2° -1 X/2n
K5011 NO _ RA_ COS or SINCOS Ix]/2n > 220 - 1 X/2x
12000 NO _ RA_ POWER X=0andy=0 -Y
or X< Oand Y X
not an integer
12000 KO _ RA_ ARTAN X=Y=0 Zero
7KO1l KF _ RA_ TAN or COT or |[Result| = oo X
SEC or CsC
08001 NO _ RA_ SINH or COSH |[Result| = oo Zero
10000 NO _ RA_ CVFTOI |X|> 230 - 1 X
10000 X0 _ RA_ CVFTOX Exp. of X> 2 Exp. - 2
TLSNL NO SY.SNE or SY.INV 1th dlagonal is (1-1)2™>7
S or S.N.E. or 0
MAT.INV.
IN _ FA_ NO F6K READ or PRINT Unused format 3 _ I _ Kk _ NA_
or PUNCH - type. (FA is (RA,I is add. of

format address)
or input no. is
too big.

101

next no.)

ERROR WCRD SUBROUTINE REASON SECOND WORD

88 NO RA D.D.IN Either X is too X

far outside

12 SA SN _ RA S.INTE Error limit is Rel. error at
(SA is store too small or last step.
add.) range too large.

After the teletype error print, the ORDVAC also prints
a card that says "SUB ERROR". Ther if ERROR was not used, it halts at
OLN7 and 1f ERROR was used, it continues to run the program by going to

the location assigned tc ERROR without stopping.

ct

Since some subroutines use other subroutines, it is

possible that the return address (RA) is a location in some subroutine

B. BRLESC
The BRLESC run error print routine prints two cards,
an alphabetic card and a binary card that contain the same information

The alphabetic card printed has the following form:

RUN ERROR Error word PROB.or Date Cols. 11-40 of PROB card IE(dec.) No.

where "Error word" is an alphabetic word that identifies the subroutine
and tries to indicate the type of trouble (see 1list below); IE is the
location of the entry to the subroutine (it is printed in decimal here,
it can be read in sexadecimal on the binary card); and "No." is a decimal
fl. pt. or integer number that is usually the argument that caused the

error condition.

102

The binary card printed by BRLESC for

D a

contains the same information as above but in a different sequence.
The 12 row of the card (only columns 1 - 68 are used) contains LE, the
11 row contains "No." and the O to 5 rows contain the same alphabetic

O T

words that are printed in columns 1 - 60 of the alphabetic card described

e
above. (The 1 row contains the "Error word".)
BRLESC Run Error List:

o
(X and Y represent arguments)

ERROR_WORD SUBROUTINE REASON _NO.
LOG X NEG. LOG or LOG1O X< o0 X
EXP BIG X EXP X > 354,89 X/Loge 2
ARCSIN 1 + ARCSIN or ARCCOS |X| >1 + 29 B

or ARCSC
SINCOS N § SIN or COS or %] /ox > 16 X/ 2n

SINCOS
POWER oTO- POWER X=0andY< O Zero
TAN DIV. O TAN or COT or SEC |Result| = 00 X

or CSC

SINH BIG SINH or COSH |Result| = oo Zero
CVFTOI BIG CVFTOIL | X| _>_16lb’ X
CVFTOX BIG CVFTOX [X] >16 or X< -16 X
S. INTEGRAT S.INTE Error limit too Rel. error at

small or range too last step.

large.)
SING.MAT SY.SNE or SY.INV ith dlsgonal is 0 (1-1)2"%°
or S.N.E. or
MAT. INV
D.D.IN D.D.IN Either X is too X

far outside table
or table 1s too

small.

103

ERROR _WORD

SET

po i)

LTI > 6

SET.TI-BUL

PAR.ERRORu

7.0, u PE

SET.TO > 6

TO.BAD BUF
INE

~n T -~ £
Ve L LN ~ 10

NO HND

(@]

SUBROUTINE

S TT

UL e ke

SET.TT

SET.TI

SET.TO

SET.TO

SET. TO

PLOT.F

PLOT.A
PIOT.T

PLOT.D
PLOT. S
PLOT. S
PLOT.A

tape units.

Parity error on

unit u.

Parity error on
unit u.

Used more than 6
tape units.
Improper buffer

specification.

Tmoroner tane unit
nproper tape it

Improper tape unit

Used more than 4

tapes.

10k

New Tape no.

Not significant.

80 column error line
is printed before
error print.

Total no. of tape
write errors.

Zero.

Teape unit no.

BRLESC halts at ON4LO after an error print if ERROR

The following ERLESC ru
only when a problem goes to the N.PROB subroutine when it is finished.
(A program that stops by reading more cards will go to N.PROB if it

has a PROB card at the end of its d&t&;) These error prints do not

tell you where the error occurred, there is no LE or NO. printed.

Section XIII;B)

ERROR WORD SUBROUTIRE REASON

NEG. SQRT N.PROB Square root of negative number.

FLT DIV O N.PROB Fl. pt. divide by zero.

FLT OV.FL. N.PROB Fl. pt. exponent overflow. (X > 16128)
SEX OV.FL. N.PROB Fixed pt. shift overflow.

DX OV.FL. N.PROB Fixed pt. divide overflow.

MX OV.FL. N.PROB Fixed pt. mult. overflow.

ASX OV.FL. N.PROB "Fixed pt. add or subtract overflow.
TAPE ERR.A Tape trunk A parity error light is on.

TAPE ERR.B Tape trunk B parity error light is on.

vTrTT PP -] P PN e o
XITI. Use of Some Spcuxul Nazes.,

The name ERRCR may be used by the programmer to specify
a location to go to when a subroutine finds an error condition during run

s /o~ ~ R \ = N P Y
time., (See Section XII.) The computer halts after a run error print if

ERROR has not been used (or if it has been used but not assigned an address

105

o’

y the programmer). If ERROR is used (in a location field or otherwise

PR | ~ - | g £ A a »
assigned by the pTOgTummcr), then the program continues running without

stopping from that location after a run error print.

If all of the data for one "case" of a problem is
read before it can encounter any error prints (other than READ error
prints), then it is wise to use ERROR as the location for starting a
new case. This allows & program to run or at least attempt to rum all

of the cases rather than stopping at the first case that won't run.

The name N.PROB represents "next problem" and a
program should go there whenever it knows that it is finished running.
A GOTO (N.PROB)% statement should be used instead of a HALT statement
in this situation.

On ORDVAC, N.PROB is assigned to OLN7 and is nothing
more than a standard halt order. It has the advantage that the tech-
nician running the program knows that the problem ran to an expected
halt, If a program halts elsewhere, he isn
pected or not.

P e B nlalal » cym

On BRLESC, FORAST allows several programs to be
stacked cn tape and run consecutively and a GOTO (N.PROB) means
exactly that. N,PROB is actually a subroutine on BRLESC that checks
for overflow conditions (See pagel05 for overflow prints), empties
tape cutput buffers, rewinds output tapes, and halils at N4O. When
programs are stackcd on tape, they must be separated by file marks

T 4t Y A "] o 4= e 7 4 £
because the coumpiller always moves thne imput tape to a file mark

befcre beginning corpilation.

(: 2
(9]
HJ
2]
ov}

allows a programmer to compile & problem, run it, compile another problem,

run it, etc. It essentially allows a programmer to stack several problems

together and run them as one problem. The deck will appear to be only

one problem t0 the computer operator, the computer will not halt between
P

each compilation and all of the time will be charged to one problem

Either ENTER or GOTO may be used to go to C.PROB

TR RV]

for rewinding the output tapes and halting.
at the end of its data. C.PROB should never be used unless there

actually is another program stacked behind the one in which it is used.

The last problem in such a stack of programs should go to N.PROB.

If while reading data, the PROB card is read, transfer

ct
o]
(@]

.PROB is done if C.PROB was mentioned anywhere in the program.

However after a "RUN ERROR" print, control always goes to N.FROB and

not C.PROB unless ERROR is used to specify where it should go.

D. M.DUMP

The name M.DUMP is designed for used as a code checking
aid. It may be used as a location to go to after a program comes to an
unexpected halt. If the person running a program manuslly transfers to
006 on ORDVAC or 058 on BRLESC when an unexpected halt occurs, (as he
should), then the program will jump.to and do the code at M.DUMP and

this code can be used to print some information that might be useful

in determining the reason for the unexpected halt. As the name implies

grammer. Inasmuch as 006 {or 058) will execute a GOTO(N.PROB) order

if no M.CIMP occures, the code at M.DUMP should always end with a GOTO
(N.PROB)% statement. '

107

XIV. Machine Assembly Language.

AT A T

Fach FORAST translator program aliows its Of

o)

]
B
g
)

assembly language to be used and assembly orders may be interspersed
t

with formulas and statements. It is also possible to include both

O'n'nt rA

RDVAC and BRLESC assembly orders in the same program in a manner that
causes each machine to ignore the assembly orders that were intended
for the other machine. (This is done by using MACH cards on ORDVAC, as

2 an AT Avrr maad ey i S a3 = Pap=Ses) ~r wAAwmo
explained below and by ucg;ln;xg each card of BRLESC assembly orders

/pe or address in an assembly order may be
either symbolic, sexadecimal or decimal. Actual numbers, rather than
the address of a number, may be written in place of an address in
assembly orders by preceding the number with the symbol¥*, Any type of
See page 56) may be written after the *, 1In
the absence of F or X at the beginning of the number, the type of
conversion is controlled b e type of order rather than the MODE,
On ORDVAC, numbers in floating point orders are converted to floating
point (unless X,I,B, or D is used) and numbers in fixed point orders are
converted to fixed point fractions if they have a decimal point and to
integers if they do not have a decimal point. On BRLESC arithmetic
orders (except shift), the actual F or X parameter bit in the order
determines the type of conversion. On non-arithmetic orders, the MODE
determines the conversion. (Note that on BRLESC the MODE actually
determines the or X parameter bit on arithmetic orders unless F or X

F o
is written as part of the order type.)

Wi LUV

A. ORDVAC Assembly language.
ORDVAC assembly orders may be written one per card
by writing the order type in columns 7-10 and the address in columns
11-76 or several may be written on the same card by using MACH in
columns 7-10 and using columns 11-76 to write any number of assembly
orders. BRLESC will ignore MACH cards but will attempt to translate the
one order per card order improperly. Hence MACH cards should be used

if the program is to be run on both machines.

108

On MACH cards, the address of each order is separated
from the order type by a (and each order is separated from the next one

by %. %% causes the rest of the card to be ignored. The enclosing)

vl &GllfL

after each address is optional and the entire address may be omitted.

The address in an order may be indexed (by using a
commza.) and causes the translator to code an index order before coding
the order that contains the indexed address. The index order may also

be written separately.

Full word orders (drum and magnetic tape) must be

written as two half words and the location field must be used to insure
hat both

halves will be located in the same word. Note that the right

address of full word orders cannot be indexed.

A blank (or omitted) address is the same as 000 except
on the A series of orders. A blank address on any of the A orders is

replaced by the address of the next word (SELF + 1).

U or GOTO and C or C+ transfer of control orders will
be changed by the translator to transfer control to the right side if
dress in the order is the location of a right order. Thus
GOTO (3.1)% will transfer to 3.1 regardless of whether it is a left or
right order. All gbsolute decimal, sexadecimal, or blank addresses are

considered to be left locations for this purpose. SELF is also a left

location.
The ORDVAC translator automatically leaves a blank half word
when necessary so that DEC, SEXA, FORM, or DEC = constants will be

stored in full words. When the translator needs to skip a half word
before it codes the next order, it automatically inserts a Zx(SELF + 1)

order.,
oraerx

Special processing is done on the address of the "tape select"
(TS) order. The address may be written as R,W, MF, MB, REW, or UNW followed
ar\

by a dashand an absolute tape unit number. The move orders (MF and MB)

may contain a '"second address" that it an absolute number of the number

109

of blocks the tape should move. For example, TS(MB-1)3% instructs
tape unit 1 to move backward 3 blocks. Instead of one of these
special symbolic names, the address may be an ordinary symbolic or
absolute address.

The table of all symbolic order types for ORDVAC is
listed in Appendix A. See [1] for a complete description of the

ORDVAC and its instruction repertoir

e 3

If an ORDVAC symbolic order type is written in
columns 7-10, it must not contain any blank columns between any

two characters of the order type.

A sexadecimal order type on ORDVAC sets all eight
bits, including the spare bit. However a decimal order type sets
only the leading six bits and does not affect the floating point bit

or spare bit.

Examples of ORDVAC Assembly Orders:

+ A
(+) X,I
M B,I % Comment
U 1k,2
MACH +{A)B(+)(X,I)PM(B,I%% COMMENT
MACH F+(T)%F/(V,J3)%A+%FM(R,J3)%
LEFT MACH DR(Ao)% 064(18. 2)1,
MACH RS()¥4% MACH cards are ignored on
BRLESC.

B. BRLESC Assembly Language.

BRLESC assembly orders may be interspersed at will
with arithmetic formulas and other statements. If the program will
type of the first assembly order on

not be run on ORDVAC, the order

110

a A8 mat
S Llad i ugny UG

™~

E
[
3

r columns 7 - 10. If the program will be run on ORDV AC,

the statement "BRLESC %" should precede the first assembly order on

each card.

Since BRLESC is a three address computer, the general
form of assembly orders should be O.T.(A)(B)(C)% where (after a)

7
o Py

is optional. It is permissible to write just O0.T.% or O0.T.(A)% or
0.T.(A)(B)% where A and B are used to indicate the first and second

o

ddresses of a BRLESC order, However there are a few exceptions where

it is not necessary to write all three addresses in order to have
used as & C address. SIJ or SETJ and IIJ or INCJ always use the

last address as the C address. A HALT order (which is also a state-

o
[¥i—

Q

ment, (See page 36) uses the last address as a C address if there 1is
more than one address written. If one address or no address is written

in a BALT order, the C address is set to (SELF + 1) automatically. GOTO

The BRLESC symbolic order_types are listed in Appendix
B along with the symbolic parameters. See | 2| for a description of the
BRLESC instruction repertoire. The F or X (floating or fixed pt.)
parameter may be written either before or after the order type while

all cother parameters must be written after the order type but may be

N

written in any sequence., If F or X (or U or N or R) 1s not specified
in a symbolic arithmetic order (except shift), the order will be set
to do the MODE (See pagef9) arithmetic. Shift orders are always fixed
point unless they are specified explicitly as floa ting point. The U

or N parameter also sets the F parameter and R also sets the X parameter.
If the MODE is FU (unnormalized fl. pt.), the U parameter is not set

cem VTV ee a\ £ et s A
uaily & floating poin

{I)

unless the order is
type begun in columns 7 - 10 must not continue into column 11. No

symbolic order type may have more than six consecutive letters and/or

decimal digits. (A minus sign may be inserted in front of the para-
meters.)

111

The entire order type (8 bits) may be specified in
sexadecimal or decimal (no signs allowed). (MODE does not affect sexa-
decimal or decimal order types.) A symbolic order type followed by a
decimal or sexadecimal (with or without a leading zefo) parameter is
allowed only on B,CB,CNB or CN, TP and IT orders. (Symbolic para-

meters are not allowed on these orders). For all other orders, the

Symbolic parameters must not be written without a
symbolic order type. If a blank or zero order type 1s desired, a 2
may be written for it and may be followed by any of the symbolic para-

meters.

Order types of CEQ and CNEQ may be used instead of

Key words for the standard program input routine
iting an order type of KEY1 where i is a decimal
digit (0,1,2,3) that defines the type of key word. Key words are only

0
required when a program 1s to be punched for use as a subroutine. Key

3

ords do not affect the storing or translation of a program and mean

nothing unless a B.SUER print 1s performed.

There are four BRLESC orders that have addresses that
are not used as memory addresses. They are: (1) B address of SH,
(2) B address of JA and JNA, (3) B address of JC and JNC, (4) C address

of I0. FORAST allows these special "addresses” to be written in a

The B address of a shift order 1s a shift code rather
than an address. The type of shift may be specified symbolically by
using the desired letters listed in Appendix B for the shift code.
These letters may be followed by the magnitude of the shift 1n decimal

112

e 3 . [, P | o

or sexadecimal and the address may be indexed in the normal way. The
direction of shift should immedlately precede the amount of shift.
Note that R has a double meaning, it means round only if it is to the
left of the direction (L or Ror +or -) o
cates a right shift. The address assigned to a symbolic name may be
used for the type and amount of shift by preceding it with "S/".

The B address of a JA or JNA order is used as a six bit character

rather than as a memory address., Therefore FORAST allows a single

- P Y mn

ritten and its six bit representation used as the B

s
(at the beginning of this

L

character to be
address of a JA or JNA order. If there is a
address, it is ignored but only one (will be ignored. If the "address"

—— et AT
is a special

('I

Temn nd A Aan o 3 b 3 et < <~ < M
“haracter or & single letter or digit, its six bit repre-

sentation wil used., If the "address" has more than one character

1
and is decimal or sexadecimal, its rightmost six bits will be used. If

the assigned address will be used except for the word BLANK which may
be used to indicate a zero address. (The six bit representation of the
s six zero bits). Note that it is not possible to
leave a blank address here as the) would be used as the character to
be represented in the address. Note also that a single zero character
give a binary address of 11 0000 (the zero character) while 00
(two zeros) will give an all zero address and represents a "blank
character. It is permissible to use the symbol ' = ' to separate the

A and B addresses in a JA or JNA order.

The B address of a JC or JNC order may be written as five sexa-

decimal characters or the equivalent decimal number. If a symbolic

nly the pri-

O
ct

name is used, then it is used in the normal way and sets

e
mary address and the index bits must be specified in the normal way.

113

The C address of an input-output order can be written in a
special way. This address is used to specify the type of input-output
(card, tape, drum or flexowriter) and other information such as tape
unit, drum channel, read or write, etc. Appendix C lists the symbolic
names that can be used to specify the C address on input-output orders.
(These special symbols must be in the third address of the order and
not in the first or second address.) The order type used (CARD; TAPE;
DRUM; FLEX) also sets the C address (the last sexadecimal) for reading
(except FLEX sets for writing) from that equipment. If the order type
specifies the equipment, then the C address need specify only the ad-
ditional information that is needed and R(or READ) or W(or WRITE) may
be used to specify the direction of information flow for that equip-
ment. (If equipment is specified both places, the equipment specified
in the C address will be used.) An order type of ZERO sets the C
address to 0807 for clearing the memory. (CLEARM may also be used in
the C address for the same purpose.) The entire 20 bit C address may

also be specified by one sexadecimal address.

The addresses in the SI, SIJ or SETJ orders may be written in the
standard way or in the same manner as followed in the SET statement.
Therefore SI(I=3)J=0 % is the same order as SI(3,I)0,J %. The address-
es in the II, IIJ or INCJ orders may be written in the standard way or
in the same manner as allowed in the INC statement. Therefore IT(I=I+1)
J = J + 4)% is the same order as II(1,I)(%4,J)%. WNote that these

assembly orders must not have more than three addresses.

A decimal number may be written in place of an address by preceding
the number with an ¥. Any type of number allowed in DEC may be written.
A sexadecimal constant may be written in place of an address by pre-
ceding it with a / or ¥*, Any type of constant allowed in SEXA may be

written.

114

Addresses that are either omitted from the end of an

assembly order or are left blank by the use of parentheses are set to

(A)B+3)T1% FMA(X,I)0)F3,J+2F
TPS(3.2)MASK)5. 7)%AX(Q)*13)k

SH(R3)BTCR20)R3% C-X(S1)*0)8.4%
an T+ 2)/,\1'!7\01:171'! o/d COMMENT

CBO(W, IL- OL4 jobkld =40 Uiy

BRLESC % TAPE ())WFMR-3A%

The following instructions have been added to BRLESC
and the FORAST compiler to facilitate the addressing of a large memory.
It is not necessary to use these instructions in writing normal FORAST
programs as the compiler automatically inserts the necessary instructions
required for large addresses. However, in subroutines and some FORAST

programs, it will be necessary to use some of the following instructions:

SEXA. SYMBOLIC CQMPUTER DESCRIPTION

11 SIL aa(20 bits) - (b) and cy = (B){(index
address.)

12 IIL ac + (b) —» (b) and cy + (B) ~ (B).

14 JL Junp to ¢y (20 bit address).

15 JSL Jurp to cy. Also A - (2); B = (3) and
(NI) -(1)

05 Js Same as JSL except jump to C instead of
cy.

160 I Ieading 4 bits of a are zero, the next

first address of the next order that is

done as specified in cy, the next 12

115

168

17

19

15

—
o

E

SYMBOLIC

INI

LPIL

IJL

IM or MI

COMPUTER DESCRIPTION J
bits are the index address for the second

address of the next order and the next

12 bits are the index address for the
hird address of the next order. c¢y is

a 20 bit address that is the address of
he next order and that order uses its
ax, bB, and cy as 20 bit addresses.
Control does not stay with the order .
specified in c¢y; after it is performed,
control returns to the next order after i
the I order.

Same as the I order except NI (next
instruction counter) is advanced when
the order specified in ¢y 1is done. This
allows ¢y to specify the very next

order following this INI order. (If

cy is not SELF+1, the next order is
skipped.)

Same as LPI except the leading bit of

B is spread to the left to form a 20

bit address when the effective address

B is computed.

aa =(b) and jump to cy + (B) where Bmust

be an index address.

aag + (b) =(b) and jump to ¢y + (B) where
p must be an index address.

ao + (b) - (B) where B is an index address.
Integer Multiply where only the last 5
sexadecimal characters of B are used as
the mutiplier and the integer product

is stored in C.

Read the real-time clock into A. B

must be 1 and jump to C. (See R.C

subroutine.)
A -(4); B ~(5); C +(6) and jump to OkO.

116

SPECIAL COMMENTS ON USING THE ABOVE SYMBOLIC ORDER TYPES IN FORAST

SIL is translated much like a SET statementAwhere the general
form of (Index address = address to put into the index) is the preferred
way of writing these instructions. Any number of indexes may be set and
a GOTO may be used after the last one to get a SIJL order for the last

, one. (Note that only two indexes may be set in each computer word when
SIL is used.)

Examples: SIL(I = A)J = B)C = O)KK = 19462 %
SIL(A,I)T = 3)GOTO(BOX 3)%
Note: A,I is the same as I = A in a SII statement.

IT1, assumes addresses in the same general form as the INC
statement. (I = I + 3) is an example of the preferred way of writing
these instructions. Any number of indexes may be increased (or decreased)
and it may be terminated with a GOTO that causes a IIJL order to be

used for the last one.

Exemples: III(I = I + 1)J =J - 3)%
ITL(K = K - 4200)T = T + 0800)V = V + 3)GoTo(7.2%
Note: 1,I is the same as I =TI + 1

SIJL and IIJL must have only one index that is to be set

or increased and a jump address.

EAL must have only one effective address to be computed and
may optionally be followed with a normal cy address that is not directly
used by the computer. If there isn't an = character after the first name
in the first address, the instruction is processed in FORAST as a normal

- three address instruction.

Examples: EAL(I = A,J)%

—_ar ! - ar o

EAL{(K = B,M - 2)Q,I %

EAL(A)I,J)% Is same as first example .

117

Four addresses may be written in the I and INI orders, three

index addresses and & non-indexable fourth address that is the location
of the next order to be done. (See above description of the I and INI
orders.) 1If the fourth address is omitted, SELF + 1 is used and the
order type will be set to 168 even when I was the symbolic order type.
The index addresses can not contain increments. If an increment is
desired, it must be written with the primary addresses in the order that
is referenced by the cy of the I or INI order. The order referenced by
an I or INI order should be preceded by "IA/" if any addresses written

K3 thn ~m, " 1 3 1
in that order might be assigned to an address longer than 14 bits. The

=]

LA/prevents the compiler from automatically inserting another I order.

Ty

Examples: I(I)J)K)A + L4 %

4% ~r

INI(M))V % 1A/TP(A + 1)/ILL)R %

XV. OPERATION AND SPEED OF THE ORDVAC TRANSIATOR.

The ORDVAC translator program is now on magnetic tape. The
program to be translated must be preceded by a "Tape Start” card and

the data to be read by the translated program should be placed immediately

after the END card. A blank card must be put at the end of the deck;

otherwise, the last card will not be read.

1. The symbolic program deck is read at maximum speed (200
cpm) and concurrently changed to alphabetic computer
words of five characters each. The non-blank words are

saved on the drum until the entire program has been read.

2. The first part of the translation process calls the

alphabetic words from the drum and generates machine orders

and stores the partially translated code back on the drum.

It creates a dictionary and constant pool in the memory.

118

3. After the END card is translated, the automatic assignment

of all unassigned symbols is done.

4., The memory is cleared to zeros (except for 0-0L; O4O-end

of constant pool; and about ONOO - OLLL).

5. The partially translated code is called from the drum, the
translation is completed and the code is stored directly
in the memory where it belongs for running. (Programs
should not be stored below ONOO in the memory).

7~ . elvREaA s Penan QWA W
6. All of the subroutines are read and the ones used by the

program are stored in the memory. They are stored back-
wards from OJ70 unless the program has specified that
they be stored elsewhere. The input-ocutput routine is

always stored at 0JJO. The subroutines are on relocatable

binary cards and therefore do not require translation.

The time required for translating a FORAST program consisting

of C cards on ORDVAC can be roughly approximated by the following

time in sec. = 20 + C

M~

he 20 seconds in the formula is the time required to read the translator

+
[¢]

program from tape. The time to actually read and translate a symbolic
program card is almost a secord in an "average" size program of about
150 cards with about two statements per card. (This time will vary
considerably with the length and number of statements on each card, the

N

number of different symbols used, the length of the program, etc.)

XVI. OPERATION AND SPEED OF THE BRLESC TRANSIATOR.

The BRLESC translator is on magnetic tape and is designed
for use with the "tape start" button. To translate a program, it
should be placed in the card reader and the data that it reads should
inmediately follow the END card. The tape start button is then pushed

and this causes the program to be translated and run. (Tape switch 15

-
[
O

must be set to the tape unit that has the compiler tape on it and tape

t be set to a tape unit that contains a "temporary" tape.
Manual read switches 36 and 35 should be down for card input and output.
The compiler and the translated program will read magnetic tape using
tape switch 6 if manual read switch 36 is up and they will put all

standard output on tape using tape switch 8 if manual read switch

¢2]

| =]
J 4

)

up. For tape input or output, 80 characters on tape are the same as

one card.)

The BRLESC translation .is done in the following sequence:

1. The symbolic program is read at 800 cards per minute and
most of the translation is done concurrently with the
card (or tape) reading. The partially translated code is
put in the memory and on a temporary tape if the memory
gets full. A constant pool and dictionary is created

and kept in the core memory.

N
¢>

fter the END card is translated, the automatic assigmment
of all unassigned symbols is done.
3. The memory is cleared to zeros. (OK-O3F and end of

constant pool to about ONOO).

L. The partially translated code is called from tape, the
translation is completed and the code is stored directly
in the memory where it belongs for running. (Programs

should not be stored in the last 8000 words of memory.)

n
>

11 PR 3 3
1 of the subroutines are read from the compiler ta

;

and the ones used by the program are stored in the memory.
They are stored backwards from OSKO unless the program
has specified that they be stored elsewhere. The input-
(next problem) routine is always stored at ONTO-ONTL.

e subroutines are in a binary re-locatable form and

therefore do not require translation.

H
N
[®]

&

that is in use atthis time. It requires about two seconds of tape

time for itself and easily translates as fast as it can read the

]

Ao Nna minn
Gruo ycr “LLLLute)

[¢]

symbolic program cards at 800
statements are on each card. The time required for translating a

program consisting of C cards on BRLESC can be approximated by the

time in seecs. = 2 + C/13 + C/100

The 2 seconds is compiler tape time, the C/l3 is card read time and
C/100 allows time for reading the "temporary" tape and completing the
translation. If the symbolic program is put on tape, then the trans-
lation will be about 3 times faster than from cards. (The time required
to translate from tape will vary considerably with the program to be
translated. For most programs, it will vary between 2 to 5 times faster

W
than the speed of card translation.)

T T

Since the BRLESC transiator is so fast, it is not necessary
for programmers to obtain binary card decks for production running. It
would take about as long (possibly longer) to read the binary deck as
it takes to translate the symbolic deck.
USING FORAST TRANSIATORS TO RUN PROGRAMS.

A. ORDVAC

A "tape start" card must be placed in front of the symbolic

FORAST program thatis to be translated and the data deck for the program
is to be placed after the END card and should have the usual blank card

s
t the end of the entire deck. (It is usually permissible to also have

[\

[e

o |

a blank card between the transliator and the first data card s

ince READ
statements ignore the first card when it is blank.) This deck is then
run in the standard way.

121

If a teletype print occurs before compilation is completed,
this indicates that the program contains an error (e.g. & mispunched
card) and will not compile. In this event, a dictionary is always
punched on cards so that the programmer might also check it for

indications of other errors.

The ORDVAC compiler halts at 009 after finding errors except
for a few types of errors for which it may halt elsewhere. If the
ORDVAC should halt during the translation without a teletype print,
then the contents of O4JJ should usually help the programmer to find the
trouble. (O4JJ will contain the card counter.) Do not toggle past any

halts that occur during compilation.

After the compilation is completed, the program begins to run
without any halt in between. If the running program halts at any place
other than OIN7 (counter has OLN8) or OLOL (counter has OLKO), a manual
Jjump to 006 should be done unless 006 contains

(OIN7 is the standard N.PROB halt and OLOL is

Jjump to OLNY anyway.

a
trying to read more cards.

L —

Any teletype output should be saved for the programmer.

XVIII. INSTRUCTIONS FOR RUNNING FORAST PROGRAMS ON BRLESC.

To compile and run & FORAST program on BRLESC, tape switech 15
must be set to the tape unit that holds the compiler tape and tape
switch 7 must be set to a unit that the compiler may use for temporary
storage. Manual read switches 36 and 35 are used to control the type
of input and output. Switch 36 must be down if the input (program and
data) is to be read from cards and it must be up if the input is on
tape. (Tape switch 6 must be set tc the unit holding the input tape.)
Manual read switeh 35 must be down if the output is to be punched on
cards and it must be up if the output is to be put on tape. (Tape
switch 8 controls the unit used for the output tape.)

When the input is on cards, the program deck and its data
are loaded into the card reader and the tape start button is pushed to

begin the compilation of the program.

122

The tape start button is always used to start compilation.
It is possible (but improbable) that this will not properly begin
compilation if the compiler tape (15) is left on certain blocks. If
after a tape start, compilation does not proceed as expected, Jjust do

another tape start and compilation should begin. The compiler tape is

PRI Y 4_

generally self-correct with regard to tape start, tape errors and
end of tape. It contains many copies of the compiler with a file mark
between copies. Almost all of the blocks move to the beginning of the

ext compiler if a tape start is done when the tape is not at the begin-

=

1

ning of a compiler copy. All blocks are read and parity checked (by
programming) before they are used and if an error is found, the block is
reread once and if the error persists, the tape is moved to the next
compiler copy and the block is read from the copy and checked, etc. To
save time and avoid wear at only the beginning of the tape, successive
blems will use successive copies of the compiler. If the compiler
tape comes to the end of all the copies on the tape, it moves itself

back twenty copies and re-uses them.

After a problem is compiled, it automatically begins to run
unless the compiler discovered one or more errors in the program. If an
error is found, during compilation, a card is punched (or tape is written
if using tape output) for each error, the "dictionary" is printed, and
the computer halts at ON4O with a B address of OLLL in the halt order.
Initiate past this ONLO halt only if the problems have been "stacked"

B S

o~y

as described below.

If the problem comes to an abrupt or unusual halt or if it
cycles, note this fact along with the NI and PO registers for the
a J

programmer's information and then do a Jump to 058. Do not jump to 058
nda

if the halt was at ON4O which is rd halt when a problem i

(928 > S U VARY WAL 1s

the sta

[

S
completed and is ready to begin the next problem. After going to 058,
the computer should soon halt at ON4O. (Going to 058 allows the programmer
to do some extra printing after his problem runs into trouble. It also
provides for checking and re-setting the overflow indicators and it causes
the time "charge" card to be punched.)

123

To stack problems for tape input, one (or more) PROB cards
must be placed at the end of each problem deck. The problem decks are
put onto tape by the off-line converter or by a program on the 1401.
Initially the tape must be set up for writing by pushing the "prepare to

record” button; then each problem is put into the card reader separately

with a PROB card at the end and is put onto tape. The block length must

not be more than eleven cards per block. (Each problem may have a different

block length, but it is best to actually use eleven card blocks as it
saves time over using shorter blocks.) The "record remains" button and
then the "write intermediate file mark" button must be pushed at the
end of each and every problem. When all of the problems have been put
on tape, an extra "END TAPE" problem should be put on the tape. Then
the "record remains" and then the "write final file mark" and then the
"rewind" buttons should be pushed. (The "END TAPE" problem put at the
end of the tape takes care of rewinding both input and output tapes
when manual read switches 36 and 35 are up and comes to an absolute

halt at ON50.)

A PAYEN

When running programs that bave been stacked on tape, it is

permissible to do a tape start at any D

o

int on the tape and the next
problem on the tape will be done. However, if the output of & problem
is being put on tape instead of cards, then a tape start before an ONLO

halt may cause the problem that just finished to not print its last few

cards" of output on tape. Thus when tape cutput is used, the operator
should always attempt to get to the ON4LO halt by jumping to 058 after
any other halts. At an ON4O balt, it is better to initiate than to do a
tape start. The o address of the halt order at ON4O (and of O77) contains
an integer number (1,2,3,...) that shows how many problems have been
run since the last tape start.

The leading part of O7J usually contains the actual problem
number assigned to the problem (C-916, 0-780, etec) in six bit characters

while the problem is running. (Only rightmost 60 bits are used.)

124

If the nth problem on an input tape should be run without
running the preceding problems, this can be done by moving the tape (n-1)
file marks before doing a tape start. (There is a file mark between each
problem on the tape as well as one at the beginning. The tape must be
stopped ahead of the file mark that precedes the next problem that is
to be done.) It is possible to skip n problems on the tape by moving
the tape forward n file marks.

When tape output is used, the tape contains variable length
line control characters for off-line printing. There is a file mark
between each problem so that the printer may be stopped at the end of
each problem and n problems may be skipped by moving the tape n file
marks. (Move n+l file marks to skip the first n problems because of
the extra file mark at the beginning of the tape.) The last problem
on the tape will print only two lines and the last line will say "LAST
PROB END TAPE".

When card output is used, the output of each problem should
be taken out of the hopper and kept separate from the other problems.
If a problem has halted at ONLO, it is not necessary to read down one
blank card as the program has already done this. It is possible that

scme binary cards will be punched when using tape output.

When problems are stacked on an input tape, a list of the
problems that are on the tape should be made. Along with the problem
number and programmer’s name, the maximum run time and any special
instructions should be noted so that the computer operator may have this
information available. This list should be kept with the output tape so
that people know what is on it. Fach output tape should be kept for at

least one week.
SUMMARY OF INSTRUCTION FOR RUNNING FORAST PROBLEMS ON BRLESC:

l. Tape control:
a. Compiler on tape switch 15, is activated by a "tape
start".
b. Tape switch 7 used for temporary tape.

125

c. For tape input using switch 6, set manual read switch
36 up.

d. TFor tape output using switch 8, set manual read switch
35 up.

Halits:

a. NLO: end of problem, initiate if problems are stacked.
(o is the no. of problems done since the last tape
start; also in ¢ of O77. If g = LLL, there was a
program error detected by the compiler.)

b. N50; end of all the problems on an input tape 6.

¢. All other halts or cycles; note PO and NI registers

and then do jump to 058. It should soon get to NkO.
If it doesn’t, then must use card deck to get "charge

card" and then do a "tape start” to begin next problem.

Stacking problems on tape (done on off-line unit):

a.

Q

[0

F

=

Cet tape at its beginning and push prepare to record
button.

Set block length to eleven (11) or less.

Set switches for card-to-tape operation.

Put 1 (or more) PROB card at end of problem.

Initiate to put problem on tape.

&
t
Lo]
i
O
o’
',_J
0]
=
=
5
=8
%)
‘:i
Lo]
L
(o)
m
Y
o
g
1]
’1-
(4]
B
8
1]
e

B
><.
5
g
=
§

time, and any special instructions on & list.

Push "record remains" button.

Push "write intermediate file mark" button.

Repeat steps 4 through h for each problem.

Put special "END TAPE" problem on tape. (Don't need
PROB card.)

Push "record remains".

Push "write final file mark" button.

Push "Rewind" button.

tacking problems on tape can also be done by IBM 1401

computer by using the proper prograrmi.

126

’_l

Listing output tape or producing cards off-line:
a. Set for tape-to-printer or tape-to-card operation.

b. Set to stop at each file mark. (Stops between each

c. Do variable length line list unless special instructions
say otherwise.

d. Start a new page at beginning of listing each problem.
(Is done automatically unless the next problem requires
80 or 160 column list.)

e. The last problem on the tape prints just 3 lines of
print, the last line says "ND TAPE".

f. To skip n problems, skip n file marks. (Skip n+l

file marks if starting at beginning of tape.)

IX. MISCELLANEOUS COMMENTS.

The method for arithmetic formula translation is a
modified and expanded version of that described by J. H.
Wegstein in [3].

The end of statement symbol "%" is not required at the

nd of the last statement on a card. The end of a card

®

automatically causes the end of a statement except when
the next card has "CONT" in cols. 7-10.

There is no limit to the number of CONT cards permitted.
Two adjacent symbols "$%" causes the rest of a card to be
ignored so that it may be used for comments.

A statement of "ORDVAC %" causes BRLESC to ignore the
rest of the card (and any successive CONT cards).

A statement of "BRLESC %" causes ORDVAC to ignore the
rest of the card (and any successive CONT cards).

Any right parenthesis immediately preceding % may be
omitted. Wherever parentheses are used only to separate
names or numbers, a single right parenthesis is necessary

and sufficient. The following left parenthesis is optional.

127

1

}_.J

0.

}_.J

Blank cards in the program are ignored. Blank cclumns
. . 1 . 3
are ignored except in a "string of characters’ in a

PRINT or PUNCH statement and within a symbolic ORDVAC

The translators do not check the memory space required
by a program against the space available. This may be
rtially checked on ORDVAC by making sure that the "%
dress is the largest in the dictionary (except
for N.PROB). The next largest address will usually be the
last one that is marked with an M. However this doesn't
necessarily check the total amount of storage required by
the running program. ORDVAC at present has about 3200
words available for a program. On BRLESC, programs have
a minimum of about 30,000 words available and each program
should leave at least 624 words at the end of the memory
for tape output buffers. The program may be further
restricted by 4000 words or more if the compiler stored
"large address" orders in the next to last segment of 4096

word segments. (The dictionary print includes a statement

The best way of code checking most problems is to insert
extra PRINT statements. They can be used to check both

the path of the pregram as w
Be sure that the printed results can be identified with the
proper PRINT statement. It is a good idea to include some
alphabetic information with each print for this purpose.
This method of code checking is practical because of the
fast compilation. The M.DUMP idea (See XIII) may also be
used to do some printing after a program runs into trouble.
It is recommended tha:;the PROB, BILOC, SYN and IAST cards
be at the beginning of the program and in that order. All
SYN cards must be ahead of the program on ORDVAC and BLOC

1

must precede the usage of any of the block names it defines.

128

12.

13.

([
e

[-]
\J1

16.

The physically last card of every program must be an END
card.

Location names appearing in LOC, DEC, SEXA, DEC =, and
FORM are assigned storage space at the point they appear
in the program. These types of cards must not be inserted
in the midst of a program. They should not follow any
executable statement except a GOTO statement and should
normally be at the beginning or end of the program.
Integer numbers must not be used as symbolic locations.
They will be used as decimal absolute addresses. Numbers
with decimal points may be used as symbolic locations.
There are no restrictions on transferring into or out of
the range of COUNT statements (except for the use of
COUNT without the "IN clause" on BRLESC.) All index
hold their current value. However since
63 index registers, a FORAST program on

e more than 54 index names unless some

E
47}
Q
=]
&
ct
=
o
=SS
&

are assigned the same storage by a SYN card. Any memory
cell on ORDVAC may be used as &an index register. '
Indexing must correspond to memory allocation because the
value in an index register is added to the primary address
to get the effective address. Thus if Xi,X2, ... are
stored in every other memory cell and addressed by writing
X1,I; then I must be increased by two to access consecutive
f's. Note also that X,I when I = 1 is not necessarily the
same as X1,I when I = O unless X is defined as part of a
"BLOC" that is assigned consecutive cells. To index
through a "BLOC", the primary address must be a member

of that block. In these respects FORAST uses more of

the philosophy of an assembler rather than that of a

compiler.

O

17.

}_l
(@]

BRLESC index registers are not full words. Therefore

it is not permissible to store floating point numbers in
cells that are assigned to index registers. . Integers
larger than 16,383 should not be stored in them either.
Care must be taken vwhen using negative numbers in index
registers as the sign bit will always be zero when they
are used as full words in the arithmetic unit.

to use that language to write "universal" programs. Below
is a 1ist of some of the differences between ORDVAC and
BRLESC that may cause the same program to do different
things on the two machines. These differences may cause
the programmer to wart to use slightly different programs
on the two computers or to run a program only on one of

the computers.

ORDVAC BRLESC
Compute Speed: 1l at least 20 times ORDVAC
Input-Output Cards only: magnetic tape

200 cpm in. cards in: 800 cpm

100 cpm out. cards out: 250 cpm
Word length: 40 bits 68 bits

+38 +155

F1.Pt.No. Range: 10 10
F1.Pt. Rounding: no yes
Index Registers: 4096 full words 63 (20 bits)
Memory Size: %096 36,864 or 53,248
Instructions per word: 2 1
Address length: 12 bits 16 bits

130

19.

20.

21.

22.

23.

2k,

The information on DEC, DEC =, SEXA and FORM cards may be
preceded by "ORDVAC (" or "BRLESC (" to allow the information
on that card to be stored only on the machine memtioned.

The other computer will ignore the rest of the card (and

any successive CONT cards). There must not be any symbol

in the statement field to the left of the computer name.

SET, INC, COUNT, and SETEA statements should not use

same statement. BRIESC doesn't always store the previous
index result before accessing the next one within the same
BRLESC instruction.

CLEAR and MOVE statements may use one to three index
registers. On ORDVAC, the first three cells of formula
temporary storage are used. On BRLESC, index registers

2,3, and 4 are used.

It is not permissible to READ and PRINT zero numbers (by
using "(I)NOS.AT" where I = O) or to CLEAR or MOVE zero
numbers. A max count o©
same as a count of one.
An IF statement always compares the contents of cells.
While it may seem that statements of SET (A = A2 % and
IF-INT(A=A2)GOTO(B)% should cause a transfer to B, they
will not. The IF statement checks the contents of A

o
"

against the contents of { ather than the contents o

A against the address A2.

The translators produce efficient but not necessarily the
best possible code. Each operation is generally coded in
the best way with respect to the previous operation. The
translators make only one pass, do not re-arrange expressions
nor waste time looking for common sub-expressions. Common

+h $ $
those involving the use of

(0]

subroutines, should be evaluated in separate statements

and re-named by the programmer. The efficiency of the

131

translated code is almost entirely dependent on the
+

$ A a alrd
iciency and skill of the programmer. In any

the inefficiencies that can be removed by the translator
are always a very small percentage of the inefficiencies

Pl o}

BN Y v
AT a am I3

;
a programmer can put intoc a program. s« worthy of

iD UL-\]
comment that FORAST does not allow some excess generalities
that tend to produce inefficient code and protracted tape
rches. They are (1) mixed integer and fl. pt. arithmetic
expressions, (2) variable multi-dimensional indexing, (3)
arithmetic expressions everywhere, (4) ALGOL type "procedures",
(5) dynem e allocation and (6) optimization of

index register usage. (Optimizétion of index registers

is not necessary because of the fact that both machines

mve 63 or rore index registers.)

ACKNOWLEDGEMENTS

Mr. Alfred Anderson programmed the decimal input-output routines
for both computers and the modified-Adams subroutine. Mr. Donald Taylor
programmed the matrix subroutines, the Runge-Kutta-Gill subroutine and
Simpson!s integration subroutine. Miss Helen Mark programmed the random
number subroutines NRNOS1 and NRNOS2 and Mr. Barry Rodin programmed
NRNOS. for BRLESC. Miss Viola Woodward programmed the Cowell and Bessel
subroutines. Acknowledgement is made to Mr. Peter Smith for his

editorial assistance.

=
%
=

'AM 1T, T,

o Al Dibaded Tadliiviy ane BuE 2z

E
¢
b
$

132

REFERENCES

LESER, T. and ROMANELLI, M. Programming and Coding for ORDVAC,

No. 997 {October 1956).

CAMPBELL, L. and BECK, G. The Instruction Code for the BRL

Electronic Scientific Computer (BRLESC), BRL Re

GSTEIN, J. From Formulas to Computer Oriented Language

the ACM, March 1959.

Fy

Communications

133

NDIX A. SYMBOLIC ORDVAC ORDER TYPES

FORAST SYMBOL
+

(+) or + H
(<) or - H

4
g

+

1-1

+

as}

=
”~~
+
S
O
H
=
+
(2]

+

[

o

bl 3
-

+

<

X or *

XU or *
(%)

LS
RS
sS

1SS
SsT

135

OLD SYMBOL

E

El
oE
oE!

M
M

oM

ATs

@

—
Q =
<

IBM IN
IBM OUT
Drum read
Drum write
"All
U*

Index

Mag.Tape Select
Mag.Tape Transfer

Mag.Tape Parity

Check

Vail L

FORAST SYMBOL
E

't

i

oE

oE!
M

M

oM or OM

ZU or HALT

IBMT
IBMO

DR or
DW or DRO
!Al
U*

s

TP

APPENDIX B, SYMBOLIC BRLESC ORDER TYPES

SEXA., SYMBOLIC 0.T.

2 Aor + ON JA
3 S or - oJ C
L M or * OF NOP
5 D or / OL RSW
6 C or C-{C+ is 62) 10 MMF
T SQRT or SQ 11 SIL
8 SH 12 IIL
9 TP 13 LPT
X B 1k

S CB 15 JSL
N CNB or CN 160 I

J PMA 168 INI
L IT 17 LPIL

18 MMB
19 SIJL

o0 HALL 1K ITJL
0l SET or SI 18 BAL
02 INC or II N INA
03 LP or LOOP 3 Jue
oh J 7or JUMP 1F ™M or MT
05 I8 1L RCL
06 J+

o7 J-

08 I0 or CARD or TAPE or

DRUM or TYPE or ZERO

09 SIJ or SETJ

0K ITJ or INCJ

0S EA

136

=

4
1

< B X

-
-t

b =2 C

[\ e

v\ oW

SYMBOLIC PARAMETERS SYMBOLIC SHIFT CODE

Floating Point D Double Length
Fixed Point B Booiean
or + Accumulate Result T Tags Included
Absolute Value of Operands R Round (if precedes direction)
Unnormalized Floating Point C Cyclic

Normalized Floating Point Z

Use R Register and Fixed L or + Left
R
Magnitude of shift may be either decimal
or sexadecimal but must be written

last.

BOOLEAN FUNCTIONS

0 8 xy (And)
Xy 9 Xy + Xy
Xy 10(x) y
%(not) 11(s) x+y
Xy 12(N) P
¥ 13(J) +y
xy + xy (Bx.or) 14(F) x + y {(In.or)
X+ 7y 15(L) 1

=~

[
w)

APPENDIX C, SYMBOLIC C ADDRESS FOR BRLESC INPUT-OUTPUT ORDERS

CARD DRUM
READ 68 DR -t - s where t = track no.
s = sector within track
READ 80 DW -t -s and both t and s must be
decimal or sexadecimal,
PUNCH 68 CLEARD - t - s CLEARD means to store zeros

on the drum.
PUNCH 80 CLEARM CLEARM may be used to store

zeros in the memory.

TAPE

A1l of the following tape commands must be followed by a dash
(minus sign) and the tape unit number in decimal. A trunk may be speci-
fied by following the unit number with A or B. If no trunk is specified,
tape read orders will use trunk A and tape write orders will use trunk B.
A "-P" should also be used on "ten character" read orders if the computer
should store a sign bit when a tape error occurs. The 10 or 12 that
follows R, RN, and W below indicates the ten character per word mode or
the twelve character per word mode of reading or writing megnetic tape.

See [2] for a description of the BRLESC magnetic tape system and the
meaning of the following symbols.

READ WRITE
R PR W
R10 REW W10
R12 REWIND w12
RN10 REWI PW
RN12 UNWIND WM
MF UNW WFMR
MOVEFO Bw
MB GAP
MOVEBA

MEFMF

MFMB

136

_n not sugmented augmented

\O o~ W =W o+

APPENDIX D.

NUMBER OF ELEMENTS IN TRIANGULAR ARRAYS

1

3
6
10
15
21

108

EAYY

153
171
190
210
221

(=~

253

276
300
325
351
578
106
435
65
496

561
295

AXD
v v

666
703
Thl
820

Qr°q
QOL

QN%
AP

946
990
1035
1081
1128
1176

12208

ey

1275

NBFowvwm

(@} Ve
= C

170
189
209
230

_n not augmented augmented

139

1326
1378
1431

N Ve

1540

1596

1653

RS

1711

1770
1830
1891

1953
T4
[-<Oi Ke)

2080

SN

2145

1377
1430
1484
1539
1595
1652
1710
1769
1829
1890
1952
2015
2079
21 4kt
2210
2277
2345
2414
2484
2555
2627
2700
277h
2849
2925
3002
3080
3159
3259
3320
3402
3485
3569
3654
3740
3827
3915
400k
409k
4185
La77
4370
kL6l
4559
L4655
L4752
4850
Lokg
5049
5150

onT

ORDBG Form 2534-(R), 2 Feb 60 Appendix E.

PROBLEM Summary of Pseudo Order Types

CODING FORM CODER DATE PAGE
LOCATION % FORMULA STATEMENTS
1 7__1dn A 20l21 B soln c yolu1 COMMENTS 80
PROB W-622 J.R. BROWN JULY 1962 SATELLITE DATA FITTING
--- DATE AUG. 20,62 Specify current date.
-—- COMM Entire card is comment.
——— MOTE FIT or FIX or FU Integer mode not allowed.
-—- BLOC (A - A24)(0200/Y17 - Y41/3) ML - M4/T % Define blocks.
- 8YN (A2 = XDOT) Q4 = 348 = X'")(N = 9) % Assign same address to different names,
—— CONT Used to continue fram previcus card.
- LAST X))z 9% These names are assigned last.
A 10C B)(C) R$ Used to get names assigned in desired sequence.
DEC (16.,1) F1k) X.21h B-1) 122) % Store decimal constants.
DEC =] TBAR = 14)(EP8 = .1-5) PI = F%5,14159) J6 = I400 % Name and store dec., constants.
SEXA (3K) LOZ) 64 ZFKB % Btore sexadecimal constants, 2 indicates one string of zeros.
FCRM (9-10) 1L -3) 4 -5)6-3-5% Store format for decimal input or output.
e LIST (8.CODE) B.CODE % Used to get dictionary and/or code printed.
S8TR 314+ 3 % Is same as if were s location on the next card.
—— NOS, oo % Used to change address of constant pool.
——— FITS 080 % Used to change temporary storage used within formulas.
- ASC (Q=8)% Used to re-assign symbolic names.
— SUBR (ARCTAN = 0800) FIX % May be used to assign subroutine storage or define new functions.
ALFN Used to store alphanumeric constants.
0,T, Used to define new pseudo BRLESC order types.
END GOTO(BTART)% Must be last card of program,

Dashes in the location fleld gbove indicates that this field is not used on ORDVAC.

™t

ORDBG Form 2534-(R), 2 Feb 60 Appendix F. PROBLEM Summary of Assembly Code and Statements

CODING FORM

CODER DATE PAGE
LOCATLON %mm FORMJLA STATEMENTS
1 6l7___1d11 & 2ol21 B sol31 c sola CORENTS 80
CENWAC Assembly Orders
FP(+) | B,I
M Tl % Any Comment allowed here after %,
MACE | +(A,J)% M (B, T+1)4 F + (R1) % F/(84)% A + % PM(X3) % U(6.2)%
BRIESC Assembly Orders
FA X) Y) 2,I% % J8(Z,I3) R) SIN % B12(X))Y %

SHX(TL + 2)(BTCR14) O % TAPE ()) PW - LB %

Examples of Arithmetic Formulas.

Y=09% A=-B% R=8=T=0% Y,I=A+B/C-EPQ+VI))

S=R*™ 3¢ Vv=_.(V-Vs*647)R% 2ch = (-Ak) B6 * C,(I-1) - W,K %

FUE(R, (T + 2) = 8,E(X ** 2 + Y % 2)¢4 FIX(T2 = .3(A - R)% INT(I1 = I - J)%

Examples of English word statements allowed.

goro{roc 3)% Goro(8.3)% coro(,E)% GOTO(N.PROB)%

SEN(I = 0) J=1) E=E2)% SEP(N=1L4) K= N+ 1) GOTO(6.4)%

BETEA(I = AJ) K =R,T-3) P =X, V1%

TNC(T = T4+ 1) T =J-2% THNG(R =R+ 084) GOTO (19.2) %

COURNT(10)IN(I)GO BACK TO(39.1)% COUNT(N + 2)BY(2)IN(J)GoTo(,B)%

IF(X)IS + OR(Y * B = 0)GOTO(BOX 3)% IF(X > A + B < 1L)AND(V = 0)GOTO(3.)%

IF - INT(I + J > = 5)C0R(A,I = B,J)WITHIN(.OOL)GOTO(S3)%

CLEAR(15)NOS,AT(A)% CLEAR(N/3)NOS.AT(B/6)%

MOVE(246)NOS.FROM(X)TO(Y)% MOVE(J + 14)NOS.FROM(V,K/-1)TO(A)

READ(X1)X2)X% % READ(5)NOS.AT(M/2)% READ-FORMAT(F6/L)-(16)NOS.AT(X1) %

PRINT(X)FX)RX % PUNCH(M + 2)NOS.AT(S,K3 + 2/4)X % PRINT < X TOO BIG > (X) %

ENTER (SINCOS)X)SIN X)COS X % ENTER (MAT.MP)A1,1)(B1,1)C1,1)3),I)5 %

HALT % HALT(3)%

ORDBG Form 2534-(R), 2 Feb 60 Appendix G. PROBLEM Sample Problems
CODING FORM

ohtT

CODER DATE PAGE
LOCATTION %mm FORMULA STATEMENTS
1 617 1du A 2ol 21 B sola; ¢ yolua i 80
8 SE————
Btatement of Problem: Read in sets of X,Y and Xt for 1 = 1,2,...,8, Compute 5 = 3XY +z: E_:
and print X,Y and 8. A card with an X value greater than lO355 will follow the -
last set of data, All nos, are floating point numbers using gtapdard 12 columm fields.
PROB C-905 L.W.C. AUGUST 1962 SAMPLE PROBLEM
BLOC (X1 - X8) :
1.1 READ (X)Y)8)NOB.AT(X1)% IF(X > 81)GOTO(N.PROB)%
SET(I = 0)% 8 =3(X *Y)
2.1 8=8+X,I
COURT' (8)IN(I)GoTo(2.1)%
PRIRT(X)Y)S % GOTO(1.1)%
81 DEC (1. + 35)
END 'Goro(l.JL)i
Statement of Problem: Read an n by n square matrix, find and print its inverse. Read ancother
matrix, etc. Assume standard input with a blank card at the end of each matrix. Print the
inverse with five 15 col. fl, pt. fields and & 5 col. card counter that starts at 1 for each
matrix. Also print & blank card between each matrix done.
PROB €-906 L.W.C. AUGUST 1952 MATRIX INVERSION
LAST | AL
START READ(16383)N0OB.AT(AL)% ENTER(CVITOF)9)N % N = SQRT(N)%
_ENTER(CVFTOLININI % ENTER(MAT,INV)AL).NI %
PRINT-FCRMAT(F)-(,9)NOS, AT(A1)%
ENTER (PRINT BIANK)% ENTER(ZEROCC)% GOTO(STARTS
F FORM | (9-15)1-5)5-1-5%
END GOTO(START)%

eqt -

ORDBG Form 2534-(R), 2 Feb 60 PROBLEM Bample Problem
CODING FORM

CODER DATE PAGE

LOCATION
1

6

"ORDER
TYPE

T 10

FORMUJIA STATEMENTS

11

COMMENTS 80

. 20] 21 B %0 [31 c uol 41

Statement of the Problem; Read an indefinite mumber of dats points (X,) and determine the = |

least squares quadratic fit of the form Y = Cl + CZX + C!}X2, Assumme X i3 in cols, 21-30

with an assumed point between cols. 24 and 25 and no exponent, Assume Y is in cols. 61-70

with an assumed point between cols, 66 and 67 and no exponent, Assume an integer code na,

is in cols. 75-80. Assume %two blank cards follow each set of data. Print the coefficients

and compute the residuals. Print any residual that is larger than 2 in sbsolute value along |

—— S

with its code number. Print three f£fl. pt. residusls per card and insert a blank card between

sets of output,

PROB

C-906 L.W.C. AUG. 1962 QUADRATIC FIT

BLOC

Al,1 - A3,4/8Y.)(VL - V4) C1 - C3) R - R5

(X)Y)CoDE

N.SET

ENTER(PRINT BLANK)%

BEGIN

CLEAR(9)NOS.AT(A1,1)% SET(I=0)%% MUST CLEAR MATRIX F(R F.N.E.

l.1

READ-F(RMAT(F1)-(X,1)Y,I)CODE,I $ TIF(09 = 0)GOTO(FIT)%

V1

=1% V2=XI% V3=X,I% 24 Vi=YT%

ENTER(F.N.E. JA1,1)3)vl % ING(I = I + 3)GoT0(1.1)%

FIT

ENTER(SY.SNE)A1,1)3)CE 4 PRINT(3)NOS.AT(Cl) < COEFFS.> %

SET(J =0) L=0%

6.1

R,L=Y,J - (C1 +X,J(C2+C3* X J))% R,L IS RESIDUAL

IF

- ARS(R,L.€ = 2)Gom0(8.1)% R1,L = CODE,J %

COUNT(6/2)IR{L)GoT0(8.1)

PRINT-FORMAT(P)-(6)NOS,AT(R)% SET(L = 0)%% PRINT RESIDUALS

8.1

couNT(1)BY(3)IN(J)GoTo(6.1)%

IF(L = 0)GOT0o(K.SET)% PRINT-FORMAT(P)-(1L)N0S.AT(R)% GOTO(N.SET)%

FRM

(3

-20) 11 -3-10)3=-3%)11 -5-10)3 -5) 4 ~5% TNPUT FORMAT

fa

FORM

(9

~12) 4 -9)3-3)1-3)5-1-8% OUTPUT FORMAT

GOTO(BEGIN)

No.

~n
[4V)

-

DISTRIBUTION LIST

of
Copies

Organization

Vi

Commander

Defense Documentation Center
ATTN: TIPCR

Cameron Station

Alexandria, Virginia 2231k

Director
Advanced Research Projects

Commanding Officer

U. S. Army Communications
Agency

The Pentagon

Washington 25, D. C.

Director, National Security
Agency
ATTN: R/D 36, Chief,
Engineering Research
Division
Fort George G. Meade, Maryland
20755

Director

P. 0. Box 1925
ATTN: James Casey
Washington, D. C. 20505

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD-RP-B

Washington, D. C. 20315

ficer
on Laboratory

Commanding Gf
Land Locomoti
Detroit Arsenal

ety irsena
Warren, Michigan 148090

Commanding Officer
Frank ford Arsenal
Philadelphia, Pen

‘IS:y vania

No.

Copies

e}
[

-

N

}_.l

145

of

Organization

na

Commanding Officer

Picatinny Arsenal

ATTN: SNUPA-DR, Mr. S. Kravitz
Artillery Ammunition
Laboratory, Bldg 351

Feltman Research lab
Dover, New Jersey 07801
mangd rlg Officer

Co

Watertown Arsenal
Watertown, Massachusetts
02172

Commanding Officer

Harry Diamond Laboratori
Washington, D. C. 20438

Genersal
Munitions Command
Jersey 07801

Commanding
U. S. Army
Dover, New

Genér“

ccile OCAammanAd
Ss1.e Lommand

Commanding
U. S. Army
ATTN: Deputy Commanding
General for Guided
Missiles (1 cy)
Redstone Arsenal, Alabama

Commanding General
U. S. Arny Weapons Command
Rock Island, Illincis 1200

arn

nOLAR 15 PRENE IS0 N §-) -

Commanding General
White Sands Missile Range
New Mexico 88002

U. S. Army Chemlcal Corps

Research and Development
Command

Washington 25, D. C.

DISTRIBUTION LIST

No. of
Copies Organization
1 Commanding Officer
U. S. Army Chemical Warfare
Laboratories
ATTN: Dr. Carl M. Herget
Edgewood Arsenal, Maryland
210ko
1 Commanding Officer
U. S. Army CBR Combat
Development Agency
Edgewood Arsenal, Maryland
21010
1 Commanding Officer
U. S. Army Nuclear Defense
Laboratory
Edgewood Arsenal, Maryland
21010
1 Commanding Officer
U. S. Army Operations Research
Group
Edgewood Arsenal, Maryland
21010
1 Commanding Officer
U. S. Army Chemical Research
and Development Labs
Edgewood Arsenal, Maryland
21010
1 Commanding Officer
U. S. Army Biclogical Labs
Fort Detrick, Maryland 21701
1 Commanding General
U. S. Army Chemical Corps
Proving Grounds
Dugway Proving Ground
Dugway, Utah 8L022
1 Commanding Officer

U. S. Army Corps of Engineers
Army Reactors Group
Fort Belvoir, Virginia 22060

No.

Copies

—~

146

Organization

Germantown, Maryland
Chief of Engineers
Building T-T7
Washington 25, D. C.

2ilve

Geodesy, Intelligence and
Mapping Research and
Development Agency

Fort Belvoir, Virginia 22060

Director

Waterwavs Exneriment Station
waterways LxXperiment 2Tatilon
P. 0. Box 631

and Development Laboratories
ATTN: STINFO Branch (1 cy)
Fort Belvoir, Virginia 22060

Commanding General
U. S. Army Cold Region Research
and Engineering Laboratories

O~

Box 282

C)

U. S. Army Medical Research and
Development Command

Washington 25, D. C.

Commanding Officer
e

U. S. Army Medical Unit
Fort Detrick, Maryland 21701
Director

U. S. Army Medical Research
Laboratory
Fort Knox, Kentucky

|

=

Organization

Director

U. S. Army Medical Research
and Nutrition Laboratory

Denver, Colorado

Commanding General

U. S. Army Signal Missile
Support Agency

White Sands Missile Range

New Mexico 88002

(@]

ommandin
S. A

Research Unit
P. 0. Box 205
Mountain View, California

o8]
0 o
e 4y

€4 pe
ignal Electronic

:

C

Commanding Officer

J. S. Army Signal Avionics
Field Office

P. 0. Box 209

St. Louis 66, Missouri

c

Commanding Officer

U. S. Army Signal Engineering
Agency

Arlingten Hall Station

Arlington, Virginia

Commanding General

U. S. Army Electronics Command
ATTN: AMSEL~-CB

Fort Monmouth, New Jersey
07703

Commanding Officer
U. S. Army Electronics Research
and Development Laboratory

ATIN: Data Equipment Branch
Fort Monmouth, New Jersey
N77N7R

Vigvo

147

Organization

Commanding General
U. S. Army Electronics Proving

Commanding Officer

U. S. Transporation Materiel
Command

12th and Spruce Streets

St. Louis 66, Missouri

U. S. Army Transporation
Research Command
Fort Eustis, Virginia 2360k

Commanding General

U. S. Combat Developments
Command

Fort Belvoir, Virginia 22060

Commanding General
U. S. Continental Army Command
Fort Monroe, Virginia 23351

Commandant

U. S. Army Artillery & Guided
Missile School

Fort Sill, Oklahoma T3503

Commandant

U. 5. Army Guided Missile
School

Redstone Arsenal, Alabama

35809

U. S. Army Signal Corps School
T

* Department

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
1 Army Research Office 2 Commander
3045 Columbia Pike U. S. Navy Ordnance Laboratory
Arlington, Virginia 22204 ATTN: Library
White Osak
1 Commanding Officer Silver Spring, Maryland 20910
Army Research Office (Durham)
Box CM, Duke Station 1 Commanding Officer
Durham, North Carolina 27706 U. S. Naval Ordnance Laboratory
Corona, California 91720
1 Commandant
U. S. Army Command and General 1 Commander
Staff College U. S. Naval Ordnance Test
ATTN: Computing Facility Station
Fort Leavenworth, Kansas 66027 China Lske, California 93357
1 Superintendent 1 Superintendent
U. S. Military Academy U. S. Naval Postgraduate School
Professor of Ordnance ATTN: Technical Reports Section
West Point, New York 10996 Monterey, California 93900
1 Commanding General 1 Director
ATTN: Computing Facility U. S. Naval Research Laboratory
Fort George G. Meade, Maryland ATTN: Mr. Nassetta
Washington, D. C. 20390
1 Commanding Officer
U. S. Army Major Item Data 1 Commander
Agency U. S. Naval Weapons Laboratory
Letterkenny Army Depot ATTN: Computation & Analysis
Chambersburg, Pennsylvania Branch
17201 Dahlgren, Virginia 22LL8
1l Contracting Officer 1 Chief of Naval Research
Charlotte Ordnance Missile Department of the Navy
Plant Washington, D. C.
1820 Statesville Avenue
Charlotte, North Carolina 1 Chief of Naval Operations
28206 Department of the Navy
Washington, D. C. 20360
3 Chief, Bureau of Naval Weapons
ATTN: DLI-3 1 Commanding Officer and Director

Department of the Navy
Washington, D. C. 20360

148

David W. Taylor Model Basin
Washington, D. C. 20007

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization
1 Chief, Bureau of Yards & Docks 1 Director

ATTN: Data Processing and

Analysis Branch

Department of the Navy
20360

Washington D) C

wa Bwllly e e

U. S. Naval Supersonic Lab
Massachusetts Institute of
Terhnnloov
Techneclogy
ATTN: Computer Facility
560 Memorial Drive

1 Chief, Bureau of Ships Cambridge, Massachusetts 02139
ATTN: Computing Facility
Department of the Navy 1 Commander
Washington, D. C. 20360 U. 5. Naval Engineering
Experiment Station
1 Superintendent ATTN: Applied Math Office,
U. S. Naval Academy Code 502
ATIN: Weapons Department Annapolis, Maryland
Annapolis, Maryland
1 Commanding Officer
1 Commanding Officer Fleet Operations Control
U. S. Naval Air Development Center
Center U. S. Pacific Fleet
Johnsville, Pennsylvania F. N. Quinn
18974 Navy No. 509
San Francisco FPO, California
1 Commanding Officer
U. S. Naval Air Test Center 1 FJSRL, OAR
ATTN: Armament Test USAF Academy
Patuxent River, Maryland 20670 Colorado 808L0
2 Commander 1 AEDC
U. S. Naval Missile Center Arnold AFB
ATTN: Simulation Branch Tennessee
Systems Department
Range Operations 1 Hq Comd USA (CDC -
Department Code 3280 J. F. Cunningham)
Point Mugu, California 93041 Bolling AFB
Washington, D. C. 20332
1 Commanding Officer .
U. S. Naval Radiological 1 AFFTC (FTTSD)
Defense Laboratory Edwards AFB
San Francisco, California California 93523
9Lk135
1 TAWC (0A)
Eglin AFB
Florida 32542

149

=

[

[\e]

[

DISTRIBUTION LIST

AFMDC (MDCS)
Holloman AFB
New Mexico 88330

TAC (0A)

o~ Aty

Langley AFB

23365

Lil2 LD,

AUL (3T-AUL-60-118)

Maxwell AFB

Alsbama 36112

ASD (Digital Computation Bran
Wright-Patterson AFB

Ohio L5433

AFIT (MCLI)
Wright-Patterson AFB
Ohio 45433

Annex 2
225 D Street, S. E.
Washington, D. C. 20333
Hq, USAF (AFAAC)
Washington, D. C.

20330

Hq, USAF (AFNIN3)
Washington, D. C.
20330

Administrat
1520 H Street, N. W.
Washington 25, D. C

b

150

Organization
Director
National Aeronautics and

Space Administration
Lewis Research Center
ATTN: Computer Facility
Cleveland Airport
Cleveland, Ohio ukL135
Director
National Aeronautics and

Space Administration
Flight Research Center
ATIN: Computer Facility
Box 273
Edwards, California

Director
National Aeronautics and
Space Administration
Goddard Space Flight Center
ATTN: Tracking & Data Systems
Computer Operations Br
Data Systems Div
Anacostia Naval Station
4555 Overlook Avenue, S.W.

Washington 25, D. C.

U. S. Department of Commerce
Bureau of Census

ATTN: Computer Facility
Federal Office Building No. 3
Suitland, Maryland

Director

National Bureau of Standards

National Applied Mathematics
Laboratory

ATTN: Miss Mary Stevens

Dr. Franz L. Alt

Computation Laboratory

Washington 25, D. C.

No.

of

Copies Organ

~
4

ization

S. N. Alexander

DISTRIBUTION LIST

No.

Copies

9
4

Components & Techniques
Section - Data
Processing Systems

Di

vision

232 Dynamometer Building

TWamnld
Washington,

D. C. 20

23

National Bureau of Standards
Department of Commerce
ATTN: William Youden Div 12 -

30
Washington,

5CL
D. C.

Aeronautical Chart and Infor-
mation Center
ATTN: Dominic P. Biagioli,

AC

CP

Sam P. Scott,
Second and Arsenal Street

St. Louis,

Director

lVLLSbULlIJ.

ACDEG-AO

Federal Aviation Agency
National Aviation Facilities
Experimental Station

ATTN: Simulation and Computa-

ti

on Branch

Atlantic City, New Jersey

Federal Aviation Agency
ATTN: Data Processing Branch - 1
Aircraft Management
Division, Bureau of

Flight Sta

P. C. Box]

i aadlodl

[a P N

Nna»
FRVAY/ =

ndards

Oak Ridge National Laboratory
ATTN: Mr. E. C. Long

P. 0. Box X
Oak Ridge,

Tennessee

37831

'_.I

=

=4

151

Organization
Brockhaven National Laboratory
ATTN: Computer Facility

Upton, New York

Director

Research Analysis Corporation
ATTN: Computer Facility
Mclean, Virginia 22101

Applied Physics Laboratory
ATTN: Computer Facility

8621 Georgia Avenue

Silver Spring, Maryland 20910
erican Data Processing Inc.
ATTN: Allen Meacham

22 Floor, Book Tower

Detroit 26, Michigan

3

Ampex Computer Products Co
9937 Jefferson Boulevard
Culver City, California

E. I. DuPont De Nemours, Co
Engineering Department

ATTN: Theodore Baumeister, IIT
Wilmington 98, Delaware

o 0

Engineering Research Associate
Division of Remington Rand, In

1902 W. Minnehaha Avenue
St. Paul, Minnesota

Honneywell Incorporated
ATTN: Mr. Donald M. Catton

1701 Pennsylvania Avenue
Sdl‘

[@9]

~
[~
3

-1

C
Washin

nh
U"Q
>On

‘{1

International Business
Machines Corporation
Engineering laboratory
ATTN: John Ashley - Customer
Executive Education
Department
San Jose, California

Na

WU,

Copies

1

DISTRIBUTION LIST

of "No.

Copies

Organization

Massey-Dickenson Company 1

ATTN: Vicent Foxworth
151 Bearhill Road
Waltman, Massachusetts

M-H Engineering and Research
e

ATTN: Kenneth Curewitz
151 Needham Street
Newton Highlands 61
Massachusetts

Raytheon Manufacturing Company 1

P. 0. Box 398

Bedford, Massachusetts 01730

Remington Rand Univac

Division of Sperry Rand Corp. 1

1900 W. ALLGgNETy Avenue

nY
+
SU . au1 M1 innes a

Technitrol Engineering Corp. 1

1952 E. Alleghany Avenue
Philadelphia 34, Pennsylvania

Watson Scientific Computing

Laboratory 1

612 W. 116th Street
New York 25, New York

California Institute of
Technology

a 9110k

California Institute of
Technology

Jet Propulsion Laboratory 1

ATTN: Computer Facility
4800 Oak Grove Drive
Pasadena, California 91103

152

Organization

Columbia University

Electronics Research Laboratory
ATTN: G. S. Bodeen
632 West 125 Street
New York 27, New York

Columbia University
Lewis Cyclation Laboratory

ATTN: Computer Facility
Box 137
Irvington on Hudscn, New York

Cornell University

ATTN: John W. Hastie -
Coordinator of Research

Ithaca, New York 14850

Dartmouth College
ATTN: Computation Center
Hanover, New Hampshire

The George Washington University
Logistics Research Project
o7 22nd Street, N. W.

on 7, D. C.

Georgia Institute of Technology
Engineering Experiment
Station
ATTN: Rich Electronic Computer
Center
Atlanta 13, Georgia

Harvard University
Computation Laboratory

33 Oxford Street

Cambridge 38, Massachusetts

Indiana University
ATTN: Research Computing
Center

Bloomington, Indiana

[

DISTRIBUTION LIST

—
(o]
N
Y @
D 2
t
)
[l
[
3 C3

n
Science and
Engineering Experiment Station
ATTN: Robert M. Stewart, Jr.
Cyclone Computer Lab
Ames, Iowa

The Johns Hopkins University
ATTN: Computation Center

Baltimore, Maryland 21218

Lehigh University
ATTN: Computer Facility
Bethlehem, Pennsylvania

Marquette University
ATTN: Computing Center

1515 West Wisconsin Avenue

Milwaukee, Wisconsin

Massachusetts Institute of
Technology

Michigan State College
College of Engineering
ATTN: M. G. Kenney -

Laboratory

a3 e e

Computing

East Lansing, Michigan

Missouri School of Mines and
Metallurgy

ATTN: Computer Facility

Rolla, Missouri

New York University
Engineering
Computation and
Statistical Lab
University Heights

New York, New York 10053

ATTN:

No.

Copies

b

1
L

-t

[

-

w

Organization

Engineering
ATIN: Mr. Bander
Columbus, Ohio

Oklahoma State University

The Computing Center

ATTN: D. R, Shreve -
Department of Mathe-
matics

Stillwater, Oklahoma

ATTN: W. E. Milne

Corvallis, Oregon

Polytechnic Institute of
Brooklyn

ATTN: Mr. Warren Boes

333 Jay Street

Brocklyn, New York

11200
Princeton University
Mathematics Department
Princeton, New Jersey

Stanford University
ATTN: Computation Center
Stanford, California 9L305

University of California
ATTN: D. H. Lehmer

9h2 Hilldale Avenue
Berkeley, California

University of Illinois
Department of Mathematics
ATTN: A. H. Taub

Urbana, Illinois

| =

DISTRIBUTION LIST

No.

ennsylvania
Electrical

University of Wisconsin
Numberical Analysis Department 1
A MTWITRT ™ T Tt

ATIN: P. J. Smith

Madison, Wisconsin

[

Professor R. F. Jackson
University of Delaware
Newark, Delaware

r.
201 ve
ran California

Dr. Steven Lukasik

Stevens Institute of Technology
Davidson Laboratories

Castle Point Station

Hoboken, New Jersey

Dr. C. V. L. Smith

U. S. Atomic Energy Commission
Germantown, Maryland 20767

Aberdeen Proving G

of

Copies

Organization

Australian Gr Sup

c/o Military Attache

Australian Embas

sy

2001 Connecticut Avenue, N.W.

Washington, D. C.

20008

The Scientific Information

Officer

Defence Research Staff
British Embassy
3100 Massachusetts Avenue, N.W.

Washington, D. C.

Of Interest to:

C-E-I-R

Projects Office

20008

Turriff Building

ATTN:

Great West Road
Brentford, Middlesex

England

Canadlan J01nt Staff

2450 Massachusetts Avenue,
Washington, D. C.

I'OLlIl(l

20008

154

Chief, TIB

Air
ri
vy

Q=2 ::

Ma
Vav
D

Force Liaison Office

ne Corps Liai
Liaison Office

C Liaison Office

cern OfFi

QiAo Ul Viia

D & PS Branch Library

Winston Riley III

N.W.

e
(94—

DOCUMENT CONTROL DATA - R&D

(Sacurity classification of title, body of abatract and indaxing annotation must ba antarad whan the ovarall report is classified)

. ORIGINATING ACTIVITY (Corporata author)

Ballistic Research Laboratories Unclassified

2e. REPORT SECURITY C LASSIFICATION

Aberdeen Proving Ground, Md. 2b GRoOuP

THE FORAST PROGRAMMING IANGUAGE FOR ORDVAC AND BRLESC (REVISED)

4. DESCRIPTIVE NOTES (Type of raport and inclusiva datas)

§. AUTHOR(S) (Lasi name, fifst name, initial)

Campbell, Lioyd W. and Beck, Glenn A.
6 REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
March 1965 15) 3
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REFORT NUMBER(S)
b PROJECT NO Report No. 1273
1PO14501A14B
c 9b. OTH REPORT NO(S) (Any other numbars that may ba essignad
this fiﬁaf)
d.

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U. S. Army Materiel Command
Washington, D. C.

13. ABSTRACT

FORAST is a procedure oriented programming language designed for use on the

ORDVAC and BRLESC computers at BRL. Although it was designed for professional
programmers, FORAST contains sufficient simple concepts to make it usable by a
novice or Jjourneyman. 1t permits the use of ithmetic formulas, some English
word statements, and each computer a i own symbolic or absolute machine
language. The latter feature perm

full power of each computer.

DD ,595':. 1473

Unclassified

Security Classification

ITmelacaed fiad
Al AR N b b de L -\ UL
Security Classification
4. N LINK A LINK B LINK C
REY WURDD
ROLE wT ROLE wT ROLE wT

Programming Ianguage
Digital Computer

TPDT QY M s e o e
Ldanol Lollpu Ll

ORDVAC Computer
Compiler
FORAST

NG T
o

1
AN

1 ORICINATING ACTIUMTVY.
41 NSIRANIALINR A AL AL 1ivVaL &L

S P,

Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
aii security classification of the report. Indicate whether
""Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-"
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meamngful title cannot be selected thhout claasifica-
tion, show title classification in ail capitals i

immediately following the title.

DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered. .

Hls in purentnests

AT LINTI/QN

nomals [y

AUTHOR(S): Enter the na e\s‘ of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, uae date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

[4
3.

O . AANTIIAMN A AT2ART NITRARALN, T . o
o8, LUINNIKAUL L UK UKANL IvumbDL ll appropna(e enter

the applicable number of the contract or grant under which
the report was written.

TN T AN ORIV RSO TREN,

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

95, ORIGINATCOR'S REPCRT NUMBER(S): Enter the offi-

cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbera (either by the originator
or by the sponsor), also enter this number(s).

N

1ICTIONGS
il

NS

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than thoae
imposed by security classification, using standard atatements

curh ool
Sucn as.

(1) ‘'Qualified requesters may obtain copies of this

report from DDC.”’

“Foreign announcement and dissemination of this
report by DDC is not authorized."’’

U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall requeat through

2

3

(4) '"'U. S. military agencies may obtain copiea of this
report directly from DDC. Other qualified users
shall request through

controlled. Qual-

(5)

If the report has been furniahed to the Office of Technical
Servicea, Department of Commerce, for aale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory spongqring (pay~
ing for) the reaearch and development. Inciude address.

ANCTDAM
13. ABSTRACT:

summary of the document indicative of the report even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet

shall be attached.

| i absgtract civing a brief and factual
Enter an abstract giving 2 brief and factual

[Fpr)

It is highly desirabie that the abstract of ciassified re-
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information in the paragraph, represented as (TS), (S),
(C), or (U).

There is no limitation on the length of the abstract.
ever, the suggested length is from 150 to 225 worda.

14. KEY WORDS: Key words are technically meamngful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Iden-
fiers, such as equipment model designation, trade name, mili-
tary pro;ect code name, geopraphxc locauon, may be used as
key words but wiil be foliowed by an indication of technical
context. The assignment of links, rules, and weights is

optional.

How-

Unclassified

Security Classification

